-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathearly_stop_tool.py
56 lines (50 loc) · 2.26 KB
/
early_stop_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import torch
import os
class EarlyStopping:
"""Early stop the training if validation acc doesn't improve after a given patience."""
def __init__(self, patience=20, verbose=False, delta=0, trace_func=print, save_all_checkpoint=False):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 20
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
trace_func (function): trace print function.
Default: print
save_all_checkpoint (bool): If True, Save the model of all checkpoints during training, requires large storage space
Default: False
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_acc_max = np.Inf
self.delta = delta
self.trace_func = trace_func
self.save_all_checkpoint = save_all_checkpoint
def __call__(self, val_acc, model, path):
score = val_acc
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_acc, model, path)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_acc, model, path)
self.counter = 0
def save_checkpoint(self, val_acc, model, path):
"""Saves model when validation loss decrease."""
if self.verbose:
self.trace_func(f'Validation acc increased ({self.val_acc_max:.6f} --> {val_acc:.6f}). Saving model ...')
if not self.save_all_checkpoint:
path = os.path.join(os.path.dirname(path), 'model.pkl')
torch.save(model.state_dict(), path)
self.val_acc_max = val_acc