-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathmain.py
158 lines (139 loc) · 5.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding:utf-8 -*-
'''
@Author: yanwii
@Date: 2018-10-31 10:00:03
'''
import pickle
import sys
import yaml
import torch
import torch.optim as optim
from data_manager import DataManager
from model import BiLSTMCRF
from utils import f1_score, get_tags, format_result
class ChineseNER(object):
def __init__(self, entry="train"):
self.load_config()
self.__init_model(entry)
def __init_model(self, entry):
if entry == "train":
self.train_manager = DataManager(batch_size=self.batch_size, tags=self.tags)
self.total_size = len(self.train_manager.batch_data)
data = {
"batch_size": self.train_manager.batch_size,
"input_size": self.train_manager.input_size,
"vocab": self.train_manager.vocab,
"tag_map": self.train_manager.tag_map,
}
self.save_params(data)
dev_manager = DataManager(batch_size=30, data_type="dev")
self.dev_batch = dev_manager.iteration()
self.model = BiLSTMCRF(
tag_map=self.train_manager.tag_map,
batch_size=self.batch_size,
vocab_size=len(self.train_manager.vocab),
dropout=self.dropout,
embedding_dim=self.embedding_size,
hidden_dim=self.hidden_size,
)
self.restore_model()
elif entry == "predict":
data_map = self.load_params()
input_size = data_map.get("input_size")
self.tag_map = data_map.get("tag_map")
self.vocab = data_map.get("vocab")
self.model = BiLSTMCRF(
tag_map=self.tag_map,
vocab_size=input_size,
embedding_dim=self.embedding_size,
hidden_dim=self.hidden_size
)
self.restore_model()
def load_config(self):
try:
fopen = open("models/config.yml")
config = yaml.load(fopen)
fopen.close()
except Exception as error:
print("Load config failed, using default config {}".format(error))
fopen = open("models/config.yml", "w")
config = {
"embedding_size": 100,
"hidden_size": 128,
"batch_size": 20,
"dropout":0.5,
"model_path": "models/",
"tasg": ["ORG", "PER"]
}
yaml.dump(config, fopen)
fopen.close()
self.embedding_size = config.get("embedding_size")
self.hidden_size = config.get("hidden_size")
self.batch_size = config.get("batch_size")
self.model_path = config.get("model_path")
self.tags = config.get("tags")
self.dropout = config.get("dropout")
def restore_model(self):
try:
self.model.load_state_dict(torch.load(self.model_path + "params.pkl"))
print("model restore success!")
except Exception as error:
print("model restore faild! {}".format(error))
def save_params(self, data):
with open("models/data.pkl", "wb") as fopen:
pickle.dump(data, fopen)
def load_params(self):
with open("models/data.pkl", "rb") as fopen:
data_map = pickle.load(fopen)
return data_map
def train(self):
optimizer = optim.Adam(self.model.parameters())
# optimizer = optim.SGD(ner_model.parameters(), lr=0.01)
for epoch in range(100):
index = 0
for batch in self.train_manager.get_batch():
index += 1
self.model.zero_grad()
sentences, tags, length = zip(*batch)
sentences_tensor = torch.tensor(sentences, dtype=torch.long)
tags_tensor = torch.tensor(tags, dtype=torch.long)
length_tensor = torch.tensor(length, dtype=torch.long)
loss = self.model.neg_log_likelihood(sentences_tensor, tags_tensor, length_tensor)
progress = ("█"*int(index * 25 / self.total_size)).ljust(25)
print("""epoch [{}] |{}| {}/{}\n\tloss {:.2f}""".format(
epoch, progress, index, self.total_size, loss.cpu().tolist()[0]
)
)
self.evaluate()
print("-"*50)
loss.backward()
optimizer.step()
torch.save(self.model.state_dict(), self.model_path+'params.pkl')
def evaluate(self):
sentences, labels, length = zip(*self.dev_batch.__next__())
_, paths = self.model(sentences)
print("\teval")
for tag in self.tags:
f1_score(labels, paths, tag, self.model.tag_map)
def predict(self, input_str=""):
if not input_str:
input_str = input("请输入文本: ")
input_vec = [self.vocab.get(i, 0) for i in input_str]
# convert to tensor
sentences = torch.tensor(input_vec).view(1, -1)
_, paths = self.model(sentences)
entities = []
for tag in self.tags:
tags = get_tags(paths[0], tag, self.tag_map)
entities += format_result(tags, input_str, tag)
return entities
if __name__ == "__main__":
if len(sys.argv) < 2:
print("menu:\n\ttrain\n\tpredict")
exit()
if sys.argv[1] == "train":
cn = ChineseNER("train")
cn.train()
elif sys.argv[1] == "predict":
cn = ChineseNER("predict")
print(cn.predict())