-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_pretrain.py
188 lines (158 loc) · 6.84 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
'''Train CIFAR10/CIFAR100 with PyTorch.'''
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils.network_utils import get_network
from utils.data_utils import get_dataloader
from utils.common_utils import PresetLRScheduler, makedirs
from utils.compute_flops import print_model_param_flops, print_model_param_flops
import numpy as np
def count_parameters(model):
"""The number of trainable parameters.
It will exclude the rotation matrix in bottleneck layer.
If those parameters are not trainiable.
"""
return sum(p.numel() for p in model.parameters())
# fetch args
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=3e-3, type=float)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--network', default='vgg', type=str)
parser.add_argument('--depth', default=19, type=int)
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--epoch', default=150, type=int)
parser.add_argument('--decay_every', default=60, type=int)
parser.add_argument('--decay_ratio', default=0.1, type=float)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--resume', '-r', default=None, type=str)
parser.add_argument('--load_path', default='', type=str)
parser.add_argument('--log_dir', default='cifar10_result/pretrain', type=str)
args = parser.parse_args()
# init model
net = get_network(network=args.network,
depth=args.depth,
dataset=args.dataset)
print(net)
# net = net.to(args.device)
net = nn.DataParallel(net).to(args.device)
# init dataloader
dataset = 'imagenet_vgg' if args.dataset == 'imagenet' and args.network == 'vgg' else args.dataset
trainloader, testloader = get_dataloader(dataset=dataset,
train_batch_size=args.batch_size,
test_batch_size=256)
# init optimizer and lr scheduler
optimizer = optim.SGD(net.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
lr_schedule = {0: args.learning_rate,
int(args.epoch*0.5): args.learning_rate*0.1,
int(args.epoch*0.75): args.learning_rate*0.01}
lr_scheduler = PresetLRScheduler(lr_schedule)
# lr_scheduler = #StairCaseLRScheduler(0, args.decay_every, args.decay_ratio)
# init criterion
criterion = nn.CrossEntropyLoss()
start_epoch = 0
best_acc = 0
if args.resume:
print('==> Resuming from checkpoint..')
# assert os.path.isdir('checkpoint/pretrain'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(f'{args.resume}')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
print(args.dataset, args.network, args.depth)
print('==> Loaded checkpoint at epoch: %d, acc: %.2f%%' % (start_epoch, best_acc))
raise Exception('Test for Acc.')
# init summary writter
log_dir = os.path.join(args.log_dir, '%s_%s%s' % (args.dataset,
args.network,
args.depth))
makedirs(log_dir)
writer = SummaryWriter(log_dir)
if args.dataset == 'tiny_imagenet':
total_flops, rotation_flops = print_model_param_flops(net, 64, cuda=True)
elif args.dataset == 'imagenet':
total_flops, rotation_flops = print_model_param_flops(net, 224, cuda=True)
else:
total_flops, rotation_flops = print_model_param_flops(net, 32, cuda=True)
num_params = count_parameters(net)
print(f"Total Flops: {total_flops}")
print(f"Total Params: {num_params}")
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
lr_scheduler(optimizer, epoch)
desc = ('[LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(lr_scheduler.get_lr(optimizer), 0, 0, correct, total))
writer.add_scalar('train/lr', lr_scheduler.get_lr(optimizer), epoch)
prog_bar = tqdm(enumerate(trainloader), total=len(trainloader), desc=desc, leave=True)
for batch_idx, (inputs, targets) in prog_bar:
inputs, targets = inputs.to(args.device), targets.to(args.device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
desc = ('[LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(lr_scheduler.get_lr(optimizer), train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
prog_bar.set_description(desc, refresh=True)
print(f'Train Loss: {train_loss/total}')
print(f'Train Acc: {np.around(correct/total*100, 2)}')
writer.add_scalar('train/loss', train_loss/(batch_idx + 1), epoch)
writer.add_scalar('train/acc', 100. * correct / total, epoch)
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
desc = ('[LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (lr_scheduler.get_lr(optimizer), test_loss/(0+1), 0, correct, total))
prog_bar = tqdm(enumerate(testloader), total=len(testloader), desc=desc, leave=True)
with torch.no_grad():
for batch_idx, (inputs, targets) in prog_bar:
inputs, targets = inputs.to(args.device), targets.to(args.device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
desc = ('[LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (lr_scheduler.get_lr(optimizer), test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
prog_bar.set_description(desc, refresh=True)
print(f'Test Loss: {test_loss/total}')
print(f'Test Acc: {np.around(correct/total*100, 2)}')
# save checkpoint
acc = 100.*correct/total
writer.add_scalar('test/loss', test_loss / (batch_idx + 1), epoch)
writer.add_scalar('test/acc', 100. * correct / total, epoch)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
'loss': loss,
'args': args
}
if not os.path.isdir(f'{args.log_dir}'):
os.mkdirs(f'{args.log_dir}')
# if not os.path.isdir('checkpoint/pretrain'):
# os.mkdir('checkpoint/pretrain')
torch.save(state, f'{args.log_dir}/best.t7')
best_acc = acc
for epoch in range(start_epoch, args.epoch):
train(epoch)
test(epoch)