-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMathematics.tex
250 lines (198 loc) · 10.3 KB
/
Mathematics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
% ============================================= %
% %
% Mathematics %
% %
% ============================================= %
\chapter{Mathematics}
\chapterinfo{}
%------------------------------
\section{Common Sums}
%\sectioninfo{Mathematical formulas for common sums}
$$\sum_{k=1}^{n}k = \frac{n(n+1)}{2}$$
$$\sum_{k=1}^{n}2k-1 = n^2$$
$$\sum_{k=1}^{n}k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=1}^{n}(2k-1)^2 = \frac{n(4n^2-1)}{3}$$
$$\sum_{k=1}^{n}k^3 = \frac{n^2(n+1)^2}{4}$$
$$\sum_{k=1}^{n}(2k-1)^3 = n^2(2n^2-1)$$
$$\sum_{k=1}^{n}k^4 = \frac{n(n+1)(n+2)(n+3)}{30}$$
$$\sum_{k=1}^{n}k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)^2}{12}$$
$$\sum_{k=1}^{n}k(k+1) = \frac{n(n+1)(n+2)}{3}$$
$$\sum_{k=1}^{n}k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
$$\sum_{k=1}^{n}k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$
%$$\sum_{k=1}^{n}k^i = \frac{\sum_{l=0}^{i+1}\frac{(i+1)!}{(i+1-l)!l!}n^l - 1 - \sum_{j=0}^{i-1}}{i+1}$$
%------------------------------
\section{Factorials}
%\sectioninfo{C++ and Java code for efficiently calculating factorials}
\indent Most of the time you'll have to compute factorials more than once in a
program. Hence in order to save time, it is beneficial to compute all of
them at once and store them in an array for future use. \\
\lstinputlisting[language=C++,label=samplecode,caption=Calculating a factorial (C++)]{Code/calcFactorialC++.txt}
\ \\
\indent Note the usage of the {\bf long long} type, a 64-bit type. However, it
can only accurately compute factorials until $20!$. After that it will
overflow the {\bf long long} type and be horribly wrong. In Java you can
use the {\bf long} type to achieve similar results, or you can cheat a
bit and use the built-in {\bf BigInteger} type like so. \\
\lstinputlisting[language=Java,label=samplecode,caption=Calculating a factorial with the BigInteger class (Java)]{Code/calcFactorialJava.txt}
\ \\
{\bf Problem} : How many digits are in the factorial of n? \\
{\bf Solution} : Simply add up the logs of the numbers less than or equal to n starting at 1. \\
\lstinputlisting[language=Java,label=samplecode,caption=Counting the digits in the factorial of a number (Java)]{Code/countDigitsJava.txt}
\ \\
{\bf Problem} : How many trailing zeroes does the number $n!$ have? \\
\lstinputlisting[language=Java,label=samplecode,caption=Counting the number of trailing zeroes in the factorial of a number (Java)]{Code/countZeroesJava.txt}
%------------------------------
\section{Derangements}
%\sectioninfo{}
Number of permutations with no fixed points. \\
\indent $!0 = 1$ and $!1 = 1$ \\
\indent $!n = (n-1)(!(n-1) + !(n-2))$ for $n \ge 2$
%------------------------------
\section{Combinations}
%\sectioninfo{}
Written as ${_n}C_r$, this represents the number of ways of selecting $r$
objects from $n$ where order is irrelevant.
$$
{_n}C_r = {{n}\choose{r}} = \frac{n!}{(n-r)!r!}\ \ \ \ \ \ \ \ \ \
{{n}\choose{r}} = {{n-1}\choose{r-1}} + {{n-1}\choose{r}}\ \ \ \ \ \ \ \ \ \
{{n}\choose{r}} = {{n}\choose{n-r}}
$$
$$
{{n}\choose{r}} = {{n}\choose{r-1}}\frac{n-r+1}{r}\ \ \ \ \ \ \ \ \ \
{{n}\choose{r}} = {{n-1}\choose{r}}\frac{n}{n-r}\ \ \ \ \ \ \ \ \
{{n}\choose{r}} = {{n-1}\choose{r-1}}\frac{n}{r}\ \ \ \ \ \ \ \ \
$$
\lstinputlisting[language=Java,label=samplecode,caption=Calculating combinations using the BigInteger class (Java)]{Code/calcCombinationsJava.txt}
\ \\
\indent However, it is safer to use the second formula in a tabular fashion since
it only involves addition. It runs in $O(n^2)$ but most of the time $n$ is
rather small, so it won't affect the overall performance. \\
\lstinputlisting[language=C++,label=samplecode,caption=Calculating combinations in a tabular fashion (C++)]{Code/calcCombinationsC++.txt}
%------------------------------
\section{Euclidean Algorithm}
%\sectioninfo{}
\indent This is an algorithm used to find the greatest common divisor of two numbers.
Runs in $O(max(\log{A}, \log{B}))$ time. \\
\lstinputlisting[language=Java,label=samplecode,caption=Euclidean Algorithm (Java)]{Code/gcd.txt}
\ \\
Note: The LCM (least common multiple) is $$\frac{ab}{gcd(a,b)}$$
%------------------------------
\section{Extended Euclidean Algorithm}
%\sectioninfo{}
\indent Given numbers $a$ and $b$, this number returns the $gcd(a,b)$ and it will
set the values of $x$ and $y$ such that $ax + by = gcd(a,b)$ is satisfied.
{\bf Uses} : finding the inverse of a number under a certain modulo.\\
\indent{\bf Note} : When $a$ and $b$ are relatively prime, i.e. $gcd(a,b) = 1$, then
$$x = a^{-1} \imod{b}$$
$$y = b^{-1} \imod{a}$$
\lstinputlisting[language=C++,label=samplecode,caption=Extended Euclidean Algorithm (C++)]{Code/extendedEuclidean.txt}
%------------------------------
\section{Catalan Numbers}
%\sectioninfo{}
\indent The Catalan numbers are a sequence of numbers that occur in many counting
problems, particularly those that involve recursively defined objects. \\
\indent The $n^(th)$ Catalan number is given by
$$C_n = \frac{1}{n+1}{{2n}\choose{n}} =
\frac{(2n)!}{(n+1)!n!} =
\prod_{k = 2}^{n}\frac{n+k}{k} =
{{2n}\choose{n}} - {{2n}\choose{n+1}} =
\frac{1}{n+1}\sum_{i=0}^{n}{{n}\choose{i}}^2$$
Asymptotically, the Catalan numbers grow as $$C_n \sim \frac{4^n}{n^{\frac{3}{2}}\sqrt{\pi}}$$
\lstinputlisting[language=C++,label=samplecode,caption=Catalan Numbers (C++)]{Code/catalan.txt}
%------------------------------
\section{Sieve of Eratosthenes}
%\sectioninfo{}
An efficient way to find all primes that are less than a certain number.
It runs in $O(\sqrt{n}\log{n}\log{\log{n}})$ time. \\
\lstinputlisting[language=Java,label=samplecode,caption=Sieve of Eratosthenes (Java)]{Code/primeSieve.txt}
%------------------------------
\section{Efficient Modular Exponentiation}
%\sectioninfo{}
Computes $a^b\imod{c}$ quickly using the method of repeated squaring \\
\ \\
{\bf Careful} : $0^0$ will return 1. It's up to you to catch this! \\
{\bf Complexity} : $O\left(\log{b}\right)$ \\
\lstinputlisting[language=Java,label=samplecode,caption=Efficient Modular Exponentiation (Java)]{Code/efficientModExp.txt}
%------------------------------
\section{Prime Factorization}
%\sectioninfo{}
Given an {\bf int}, this function returns a vector composed of its prime
factors (repetition included) in ascending order. \\
\ \\
{\bf Complexity} : $O(\sqrt{n})$ \\
\lstinputlisting[language=C++,label=samplecode,caption=Prime Factorization (C++)]{Code/primeFactorizationC++.txt}
%------------------------------
\section{Primality Testing}
%\sectioninfo{}
{\bf Complexity} : $O(\sqrt{n})$ \\
\lstinputlisting[language=C++,label=samplecode,caption=Primality Testing (C++)]{Code/primalityTesting.txt}
%------------------------------
\section{Totient Function}
%\sectioninfo{}
Denoted as $\phi(n)$, is the number of positive integers that are less than
or equal to $n$. Mathematically, it it $$\prod_{p_i | n}^{}n\left(1-\frac{1}{p_i}\right)$$
for all distinct primes $p$ that divide $n$. Also, there is a slight
optimization that takes advantage of the fact that other than 2 and 3, all
primes are either $1 \imod{6}$ or $5 \imod{6}$.
\lstinputlisting[language=C++,label=samplecode,caption=Totient Function (C++)]{Code/totient.txt}
%------------------------------
\section{Chinese Remainder Theorem}
%\sectioninfo{}
Given two arrays $a$, $n$ where
$$x = a[0] \imod{n[0]}$$
$$x = a[1] \imod{n[1]}$$
$$.$$
$$.$$
$$.$$
this returns an array $z$, the solution of this system of equations where
$x = z[0] \imod{z[1]}$.
\lstinputlisting[language=Java,label=samplecode,caption=Chinese Remainder Theorem (Java)]{Code/chineseRemainderTheoremJava.txt}
%------------------------------
\section{Perfect Power Test}
%\sectioninfo{}
Efficient method of testing if a number can be written in the form $a^b$.
\lstinputlisting[language=Java,label=samplecode,caption=Perfect Power Test (Java)]{Code/perfectPowerTest.txt}
%------------------------------
\section{Fraction-Decimal Converter}
%\sectioninfo{}
When dealing with fractions, it’s sometimes required to print them to a
certain precision. You definitely don’t want to convert it to a double and
print that out since there might be errors after 10 or so digits. Another
way to approach this problem is to repeatedly multiply and mod while
maintaining the number in fractional form. Note, this method is similar
to how people divide by hand. This runs in $O\left(k\right)$ where $k$ is the number of
digits of precision.
\lstinputlisting[language=C++,label=samplecode,caption=Fraction-Decimal Converter (C++)]{Code/frac2DecimalConversionC++.txt}
%------------------------------
\section{Fast Pythagorean Triplet Generator}
%\sectioninfo{}
This algorithm uses a BFS on the initial triple $\left(3,4,5\right)$ to
generate all other triplets. Given an integer {\bf MAX\_N}, this function
returns a vector of all Pythagorean triplets with sides no bigger than
{\bf MAX\_N}. \\
\ \\
{\bf Complexity} : $O\left(k\right)$ - This algorithm is output sensitive
($k$ is the number of answers).\\
{\bf Note} : All triplets returned are unique. In each triplet
$\left(a,b,c\right)$ $a$ is not necessarily less than or equal to $b$. The
list includes non-primitive triplets. (This can easily be removed if not needed)\\
\lstinputlisting[language=C++,label=samplecode,caption=Fast Pythagorean Triplet Generator (C++)]{Code/fastPythagoreanTripletGeneratorC++.txt}
%------------------------------
\section{Matrix Determinant}
%\sectioninfo{}
\ \ \ \ This uses partial Gaussian elimination to obtain an upper triangular matrix,
then the product of the main diagonal is the determinant.\\
Assume that a Matrix class has already been created that contains:\\
\indent{\bf int n, m;} (the dimensions)\\
\indent{\bf double mat[][];} (the entries)\\
has already been declared. Along with some basic constructors and helper
methods. (i.e. {\bf swapRow})
\lstinputlisting[language=Java,label=samplecode,caption=Matrix Determinant (Java)]{Code/matrixDeterminant.txt}
%------------------------------
\section{Inverse of a Matrix}
%\sectioninfo{}
This uses Gaussian elimination\\
\ \\
{\bf Note} : Doubles are not very precise. \\
\lstinputlisting[language=Java,label=samplecode,caption=Matrix Inverse (Java)]{Code/matrixInverse.txt}
%------------------------------