-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdada2-per-run-processing.R
70 lines (55 loc) · 2.39 KB
/
dada2-per-run-processing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#
library("dada2")
library("ggplot2")
options(width=190)
# Set path
trimmed = "trimmed" # cutadapt trimmed fastq files
filt = "filt" # dada2 trimmed fastq files
fns = sort(list.files(trimmed, full.names = TRUE))
fnFs = fns[grep("1.fastq.gz", fns)]
fnRs = fns[grep("2.fastq.gz", fns)]
sample.names = gsub(".1.fastq.gz", "", basename(fnFs))
# Plot quality profile of fastq files
ii = 1:length(sample.names)
pdf("plotQualityProfile.pdf", width = 8, height = 8, pointsize = 12)
for(i in ii) {
message(paste0("[", i ,"/", length(sample.names), "] ", sample.names[i]))
print(plotQualityProfile(fnFs[i]) + ggtitle("Fwd"))
print(plotQualityProfile(fnRs[i]) + ggtitle("Rev"))
}
dev.off()
# Set paths to the dada2-filterd files
filtFs = file.path(filt, basename(fnFs))
filtRs = file.path(filt, basename(fnRs))
# Perform filtering and trimming
# Review "plotQualityProfile.pdf" to select the best paramters for 'truncLen'
out = filterAndTrim(fnFs, filtFs, fnRs, filtRs,
# Need to keep paramters consistent between runs of the same study
truncLen = c(260,200), minLen = 200, maxN = 0, truncQ = 2, maxEE = c(2,5),
rm.phix = TRUE, compress = TRUE, verbose = TRUE, multithread = TRUE)
out = as.data.frame(out)
rownames(out) = sample.names
head(out, 10)
# Dereplication and learn the error rates (Default: nbases = 1e8)
# derepFastq() has been intergrated into learnErrors()
errF = learnErrors(filtFs, multithread = TRUE)
errR = learnErrors(filtRs, multithread = TRUE)
pdf("plotErrors.pdf", width = 10, height = 10, pointsize = 12)
plotErrors(errF, nominalQ = TRUE)
plotErrors(errR, nominalQ = TRUE)
dev.off()
# Sample Inference
# By default, the `dada` function processes each sample independently (pool = FALSE)
# Use `pool = TRUE` or `pool = pseudo` (recommended) if samples are from an extremely diverse community (e.g. soil)
dadaFs = dada(filtFs, err = errF, pool = FALSE, multithread = TRUE)
dadaRs = dada(filtRs, err = errR, pool = FALSE, multithread = TRUE)
# Merge paired reads (Default: minOverlap = 12; maxMismatch = 0)
mergers = mergePairs(dadaFs, filtFs, dadaRs, filtRs, verbose = TRUE)
# Construct sequence table
seqtab = makeSequenceTable(mergers)
# View the length frequency distribution
table(nchar(getSequences(seqtab)))
# Save sequence table
saveRDS(seqtab, "seqtab.rds") # or as an example, use seqtab[c(1:5),] to save data for a subset of the first 5 samples
# Save current workspace
# save.image(file = "image1.RData")