forked from LinXueyuanStdio/LaTeX_OCR_PRO
-
Notifications
You must be signed in to change notification settings - Fork 27
/
predict.py
68 lines (53 loc) · 2.26 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from scipy.misc import imread
import PIL
import os
from PIL import Image
import numpy as np
from model.img2seq import Img2SeqModel
from model.utils.general import Config, run
from model.utils.text import Vocab
from model.utils.image import greyscale, crop_image, pad_image, downsample_image, TIMEOUT
def interactive_shell(model):
"""Creates interactive shell to play with model
"""
model.logger.info("""
This is an interactive mode.
To exit, enter 'exit'.
Enter a path to a file
input> data/images_test/0.png""")
while True:
# img_path = raw_input("input> ")# for python 2
img_path = input("input> ") # for python 3
if img_path == "exit" or img_path == "q":
break # 退出交互
if img_path[-3:] == "png":
img = imread(img_path)
elif img_path[-3:] == "pdf":
# call magick to convert the pdf into a png file
buckets = [
[240, 100], [320, 80], [400, 80], [400, 100], [480, 80], [480, 100],
[560, 80], [560, 100], [640, 80], [640, 100], [720, 80], [720, 100],
[720, 120], [720, 200], [800, 100], [800, 320], [1000, 200],
[1000, 400], [1200, 200], [1600, 200], [1600, 1600]
]
dir_output = "tmp/"
name = img_path.split('/')[-1].split('.')[0]
run("magick convert -density {} -quality {} {} {}".format(200, 100, img_path, dir_output+"{}.png".format(name)), TIMEOUT)
img_path = dir_output + "{}.png".format(name)
crop_image(img_path, img_path)
pad_image(img_path, img_path, buckets=buckets)
downsample_image(img_path, img_path, 2)
img = imread(img_path)
img = greyscale(img)
hyps = model.predict(img)
model.logger.info(hyps[0])
if __name__ == "__main__":
# restore config and model
dir_output = "./results/full/"
config_vocab = Config(dir_output + "vocab.json")
config_model = Config(dir_output + "model.json")
vocab = Vocab(config_vocab)
model = Img2SeqModel(config_model, dir_output, vocab)
model.build_pred()
# model.restore_session(dir_output + "model_weights/model.cpkt")
interactive_shell(model)