-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
31 lines (25 loc) · 1.17 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import torch.utils.data as data
from data.dataset import GalaxyDataset
from config import generate_opt
from data.data_augmentation import preprocess
from torchvision import datasets
def generate_loader(args):
"""
:param args: the arguments
:return:
"""
train_data = GalaxyDataset(os.path.join(args.path, 'train'), transform=preprocess())
val_data = GalaxyDataset(os.path.join(args.path, 'val'), transform=preprocess())
print(len(train_data))
# test_data = GalaxyDataset(path=args.path + '/test/')
train_loader = data.DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True, num_workers=0)
val_loader = data.DataLoader(dataset=val_data, batch_size=args.batch_size, shuffle=False, num_workers=0)
# test_loader = data.DataLoader(dataset=test_data, batch_size=args.batch_size, shuffle=False, num_workers=0)
return train_loader, val_loader
if __name__ == "__main__":
args = generate_opt()
train_loader, val_loader = generate_loader(args)
train_dataset = datasets.ImageFolder(os.path.join(args.path, 'train'), transform=preprocess())
print(len(train_dataset))
# print(train)