forked from square/go-jose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasymmetric_test.go
468 lines (400 loc) · 11.8 KB
/
asymmetric_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"errors"
"io"
"math/big"
"testing"
)
func TestVectorsRSA(t *testing.T) {
// Sources:
// http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
// ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15crypt-vectors.txt
priv := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: fromHexInt(`
a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8
ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0c
bc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bd
bf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93
ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb`),
E: 65537,
},
D: fromHexInt(`
53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf1195
17ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d
4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d6
5a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb
04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1`),
Primes: []*big.Int{
fromHexInt(`
d32737e7267ffe1341b2d5c0d150a81b586fb3132bed2f8d5262
864a9cb9f30af38be448598d413a172efb802c21acf1c11c520c
2f26a471dcad212eac7ca39d`),
fromHexInt(`
cc8853d1d54da630fac004f471f281c7b8982d8224a490edbeb3
3d3e3d5cc93c4765703d1dd791642f1f116a0dd852be2419b2af
72bfe9a030e860b0288b5d77`),
},
}
input := fromHexBytes(
"6628194e12073db03ba94cda9ef9532397d50dba79b987004afefe34")
expectedPKCS := fromHexBytes(`
50b4c14136bd198c2f3c3ed243fce036e168d56517984a263cd66492b808
04f169d210f2b9bdfb48b12f9ea05009c77da257cc600ccefe3a6283789d
8ea0e607ac58e2690ec4ebc10146e8cbaa5ed4d5cce6fe7b0ff9efc1eabb
564dbf498285f449ee61dd7b42ee5b5892cb90601f30cda07bf26489310b
cd23b528ceab3c31`)
expectedOAEP := fromHexBytes(`
354fe67b4a126d5d35fe36c777791a3f7ba13def484e2d3908aff722fad4
68fb21696de95d0be911c2d3174f8afcc201035f7b6d8e69402de5451618
c21a535fa9d7bfc5b8dd9fc243f8cf927db31322d6e881eaa91a996170e6
57a05a266426d98c88003f8477c1227094a0d9fa1e8c4024309ce1ecccb5
210035d47ac72e8a`)
// Mock random reader
randReader = bytes.NewReader(fromHexBytes(`
017341ae3875d5f87101f8cc4fa9b9bc156bb04628fccdb2f4f11e905bd3
a155d376f593bd7304210874eba08a5e22bcccb4c9d3882a93a54db022f5
03d16338b6b7ce16dc7f4bbf9a96b59772d6606e9747c7649bf9e083db98
1884a954ab3c6f18b776ea21069d69776a33e96bad48e1dda0a5ef`))
defer resetRandReader()
// RSA-PKCS1v1.5 encrypt
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
encryptedPKCS, err := enc.encrypt(input, RSA1_5)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedPKCS, expectedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP encrypt
encryptedOAEP, err := enc.encrypt(input, RSA_OAEP)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedOAEP, expectedOAEP) != 0 {
t.Error("Output does not match expected value (OAEP)")
}
// Need fake cipher for PKCS1v1.5 decrypt
resetRandReader()
aes := newAESGCM(len(input))
keygen := randomKeyGenerator{
size: aes.keySize(),
}
// RSA-PKCS1v1.5 decrypt
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
decryptedPKCS, err := dec.decrypt(encryptedPKCS, RSA1_5, keygen)
if err != nil {
t.Error("Decryption failed:", err)
return
}
if bytes.Compare(input, decryptedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP decrypt
decryptedOAEP, err := dec.decrypt(encryptedOAEP, RSA_OAEP, keygen)
if err != nil {
t.Error("decryption failed:", err)
return
}
if bytes.Compare(input, decryptedOAEP) != 0 {
t.Error("output does not match expected value (OAEP)")
}
}
func TestInvalidAlgorithmsRSA(t *testing.T) {
_, err := newRSARecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newRSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &rsaTestKey.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
err = enc.verifyPayload([]byte{}, []byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
_, err = dec.decrypt(make([]byte, 256), "XYZ", randomKeyGenerator{size: 16})
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = dec.signPayload([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
type failingKeyGenerator struct{}
func (ctx failingKeyGenerator) keySize() int {
return 0
}
func (ctx failingKeyGenerator) genKey() ([]byte, rawHeader, error) {
return nil, rawHeader{}, errors.New("failed to generate key")
}
func TestPKCSKeyGeneratorFailure(t *testing.T) {
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
generator := failingKeyGenerator{}
_, err := dec.decrypt(make([]byte, 256), RSA1_5, generator)
if err != ErrCryptoFailure {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidAlgorithmsEC(t *testing.T) {
_, err := newECDHRecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newECDSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(ecEncrypterVerifier)
enc.publicKey = &ecTestKey256.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidECKeyGen(t *testing.T) {
gen := ecKeyGenerator{
size: 16,
algID: "A128GCM",
publicKey: &ecTestKey256.PublicKey,
}
if gen.keySize() != 16 {
t.Error("ec key generator reported incorrect key size")
}
_, _, err := gen.genKey()
if err != nil {
t.Error("ec key generator failed to generate key", err)
}
}
func TestInvalidECDecrypt(t *testing.T) {
dec := ecDecrypterSigner{
privateKey: ecTestKey256,
}
generator := randomKeyGenerator{size: 16}
// Missing epk header
headers := rawHeader{
Alg: string(ECDH_ES),
}
_, err := dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with missing epk header")
}
// Invalid epk header
headers.Epk = &JsonWebKey{}
_, err = dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with invalid epk header")
}
}
func TestDecryptWithIncorrectSize(t *testing.T) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
payload := make([]byte, 254)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
payload = make([]byte, 257)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
}
func TestPKCSDecryptNeverFails(t *testing.T) {
// We don't want RSA-PKCS1 v1.5 decryption to ever fail, in order to prevent
// side-channel timing attacks (Bleichenbacher attack in particular).
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
for i := 1; i < 50; i++ {
payload := make([]byte, 256)
_, err := io.ReadFull(rand.Reader, payload)
if err != nil {
t.Error("Unable to get random data:", err)
return
}
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err != nil {
t.Error("PKCS1v1.5 decrypt should never fail:", err)
return
}
}
}
func BenchmarkPKCSDecryptWithValidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(32)
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func BenchmarkPKCSDecryptWithInvalidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 16)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
// Do some simple scrambling
ciphertext[128] ^= 0xFF
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func TestInvalidEllipticCurve(t *testing.T) {
signer256 := ecDecrypterSigner{privateKey: ecTestKey256}
signer384 := ecDecrypterSigner{privateKey: ecTestKey384}
signer521 := ecDecrypterSigner{privateKey: ecTestKey521}
_, err := signer256.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-256 key")
}
_, err = signer256.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-256 key")
}
_, err = signer384.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-384 key")
}
_, err = signer384.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-384 key")
}
_, err = signer521.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-521 key")
}
_, err = signer521.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-521 key")
}
}
func TestInvalidECPublicKey(t *testing.T) {
// Invalid key
invalid := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromBase64Int("MTEx"),
Y: fromBase64Int("MTEx"),
},
D: fromBase64Int("0_NxaRPUMQoAJt50Gz8YiTr8gRTwyEaCumd-MToTmIo="),
}
headers := rawHeader{
Alg: string(ECDH_ES),
Epk: &JsonWebKey{
Key: &invalid.PublicKey,
},
}
dec := ecDecrypterSigner{
privateKey: ecTestKey256,
}
_, err := dec.decryptKey(headers, nil, randomKeyGenerator{size: 16})
if err == nil {
t.Fatal("decrypter accepted JWS with invalid ECDH public key")
}
}
func TestInvalidAlgorithmEC(t *testing.T) {
err := ecEncrypterVerifier{publicKey: &ecTestKey256.PublicKey}.verifyPayload([]byte{}, []byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Fatal("should not accept invalid/unsupported algorithm")
}
}