-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
488 lines (414 loc) · 20.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import argparse
import logging
import os
import pdb
import random
import shutil
import sys
from timeit import default_timer as timer
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.metrics import average_precision_score, confusion_matrix
from tensorboardX import SummaryWriter
from torch.backends import cudnn
from tqdm import tqdm
import evaluation
import models
from loss import hybrid_regr_loss
from torchsummary import summary
from utils.data_generator import DataGenerator
from utils.utilities import (create_logging, doa_labels, event_labels,
get_filename, logging_and_writer,
print_evaluation, to_torch)
## Hyper-parameters
################# Model #################
Model_SED = 'CRNN10' # 'CRNN10' | 'VGG9'
Model_DOA = 'pretrained_CRNN10' # 'pretrained_CRNN10' | 'pretrained_VGG9'
model_pool_type = 'avg' # 'max' | 'avg'
model_pool_size = (2,2)
model_interp_ratio = 16
loss_type = 'MAE'
################# param #################
batch_size = 32
Max_epochs = 50
lr = 1e-3
weight_decay = 0
threshold = {'sed': 0.3}
fs = 32000
nfft = 1024
hopsize = 320 # 640 for 20 ms
mel_bins = 96
frames_per_1s = fs // hopsize
sub_frames_per_1s = 50
chunklen = int(2 * frames_per_1s)
hopframes = int(0.5 * frames_per_1s)
hdf5_folder_name = '{}fs_{}nfft_{}hs_{}melb'.format(fs, nfft, hopsize, mel_bins)
################# batch intervals for save & lr update #################
save_interval = 2000
lr_interval = 2000
########################################################################
def train(args, data_generator, model, optimizer, logging):
# Set the writer
writer = SummaryWriter()
writer.add_text('Parameters', str(args))
temp_submissions_dir = os.path.join(appendixes_dir, '__submissions__')
trial = 0
while os.path.isdir(os.path.join(temp_submissions_dir, 'trial_{}'.format(trial))):
trial += 1
temp_submissions_dir_train = os.path.join(temp_submissions_dir, 'trial_{}'.format(trial), 'train')
temp_submissions_dir_valid = os.path.join(temp_submissions_dir, 'trial_{}'.format(trial), 'valid')
logging.info('\n===> Training mode')
train_begin_time = timer()
epoch_size = data_generator.epoch_size
iterator = tqdm(enumerate(data_generator.generate_train()),
total=Max_epochs*epoch_size, unit='batch')
for batch_idx, (batch_x, batch_y_dict) in iterator:
epochs = int(batch_idx//epoch_size)
epoch_batches = int(batch_idx%epoch_size)
################
## Validation
################
if batch_idx % 200 == 0:
valid_begin_time = timer()
train_time = valid_begin_time - train_begin_time
# Train evaluation
shutil.rmtree(temp_submissions_dir_train, ignore_errors=True)
os.makedirs(temp_submissions_dir_train, exist_ok=False)
train_metrics = evaluation.evaluate(
data_generator=data_generator,
data_type='train',
max_audio_num=30,
task_type=args.task_type,
model=model,
cuda=args.cuda,
loss_type=loss_type,
threshold=threshold,
submissions_dir=temp_submissions_dir_train,
frames_per_1s=frames_per_1s,
sub_frames_per_1s=sub_frames_per_1s)
logging.info('----------------------------------------------------------------------------------------------------------------------------------------------')
# Validation evaluation
if args.fold != -1:
shutil.rmtree(temp_submissions_dir_valid, ignore_errors=True)
os.makedirs(temp_submissions_dir_valid, exist_ok=False)
valid_metrics = evaluation.evaluate(
data_generator=data_generator,
data_type='valid',
max_audio_num=30,
task_type=args.task_type,
model=model,
cuda=args.cuda,
loss_type=loss_type,
threshold=threshold,
submissions_dir=temp_submissions_dir_valid,
frames_per_1s=frames_per_1s,
sub_frames_per_1s=sub_frames_per_1s)
metrics = [train_metrics, valid_metrics]
logging_and_writer('valid', metrics, logging, writer, batch_idx)
else:
logging_and_writer('train', train_metrics, logging, writer, batch_idx)
valid_time = timer() - valid_begin_time
logging.info('Iters: {}, Epochs/Batches: {}/{}, Train time: {:.3f}s, Eval time: {:.3f}s'.format(
batch_idx, epochs, epoch_batches, train_time, valid_time))
logging.info('----------------------------------------------------------------------------------------------------------------------------------------------')
train_begin_time = timer()
###############
## Save model
###############
if batch_idx % save_interval == 0 and batch_idx > 30000:
save_path = os.path.join(models_dir,
'iter_{}.pth'.format(batch_idx))
checkpoint = {'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state()}
torch.save(checkpoint, save_path)
logging.info('Checkpoint saved to {}'.format(save_path))
###############
## Train
###############
# Reduce learning rate
if batch_idx % lr_interval == 0 and batch_idx > 30000:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.9
batch_x = to_torch(batch_x, args.cuda)
batch_y_dict = {
'events': to_torch(batch_y_dict['events'], args.cuda),
'doas': to_torch(batch_y_dict['doas'], args.cuda)
}
# Forward
model.train()
output = model(batch_x)
# Loss
seld_loss, _, _ = hybrid_regr_loss(output, batch_y_dict, args.task_type, loss_type=loss_type)
# Backward
optimizer.zero_grad()
seld_loss.backward()
optimizer.step()
if batch_idx == Max_epochs*epoch_size:
iterator.close()
writer.close()
break
def inference(args, data_generator, logging):
# Load model for sed only
print('\n===> Inference for SED')
if args.task_type == 'two_staged_eval':
model_path = os.path.join(models_dir, 'sed_only',
'model_' + Model_SED + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) + '_seed_{}'.format(args.seed),
'iter_{}.pth'.format(args.iteration))
assert os.path.exists(model_path), 'Error: no checkpoint file found!'
model = models.__dict__[Model_SED](class_num, args.model_pool_type,
args.model_pool_size, args.model_interp_ratio, pretrained_path)
checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['model_state_dict'])
if args.cuda:
model.cuda()
fold_submissions_dir= os.path.join(submissions_dir, args.task_type, 'model_' + args.model + '_{}'.format(args.audio_type) + \
'_seed_{}'.format(args.seed), '_test')
shutil.rmtree(fold_submissions_dir, ignore_errors=True)
os.makedirs(fold_submissions_dir, exist_ok=False)
test_metrics = evaluation.evaluate(
data_generator=data_generator,
data_type='test',
max_audio_num=None,
task_type='sed_only',
model=model,
cuda=args.cuda,
loss_type=loss_type,
threshold=threshold,
submissions_dir=fold_submissions_dir,
frames_per_1s=frames_per_1s,
sub_frames_per_1s=sub_frames_per_1s)
# Load model for doa using sed pred
print('\n===> Inference for SED and DOA')
model_path = os.path.join(models_dir, 'doa_only',
'model_' + Model_DOA + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) + '_seed_{}'.format(args.seed),
'iter_{}.pth'.format(args.iteration))
assert os.path.exists(model_path), 'Error: no checkpoint file found!'
model = models.__dict__[Model_DOA](class_num, args.model_pool_type,
args.model_pool_size, args.model_interp_ratio, pretrained_path)
checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['model_state_dict'])
if args.cuda:
model.cuda()
test_metrics = evaluation.evaluate(
data_generator=data_generator,
data_type='test',
max_audio_num=None,
task_type='two_staged_eval',
model=model,
cuda=args.cuda,
loss_type=loss_type,
threshold=threshold,
submissions_dir=fold_submissions_dir,
frames_per_1s=frames_per_1s,
sub_frames_per_1s=sub_frames_per_1s)
else:
# 'sed_only' | 'doa_only' | 'seld'
model_path = os.path.join(models_dir, args.task_type,
'model_' + args.model + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) + '_seed_{}'.format(args.seed),
'iter_{}.pth'.format(args.iteration))
assert os.path.exists(model_path), 'Error: no checkpoint file found!'
model = models.__dict__[args.model](class_num, args.model_pool_type,
args.model_pool_size, args.model_interp_ratio, pretrained_path)
checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['model_state_dict'])
if args.cuda:
model.cuda()
fold_submissions_dir= os.path.join(submissions_dir, args.task_type, 'model_' + args.model + '_{}'.format(args.audio_type) + \
'_seed_{}'.format(args.seed), '_test')
shutil.rmtree(fold_submissions_dir, ignore_errors=True)
os.makedirs(fold_submissions_dir, exist_ok=False)
test_metrics = evaluation.evaluate(
data_generator=data_generator,
data_type='test',
max_audio_num=None,
task_type=args.task_type,
model=model,
cuda=args.cuda,
loss_type=loss_type,
threshold=threshold,
submissions_dir=fold_submissions_dir,
frames_per_1s=frames_per_1s,
sub_frames_per_1s=sub_frames_per_1s)
logging.info('----------------------------------------------------------------------------------------------------------------------------------------------')
logging_and_writer('test', test_metrics, logging)
logging.info('----------------------------------------------------------------------------------------------------------------------------------------------')
test_submissions_dir= os.path.join(submissions_dir, args.task_type, 'model_' + args.model + '_{}'.format(args.audio_type) + \
'_seed_{}'.format(args.seed), 'test')
os.makedirs(test_submissions_dir, exist_ok=True)
for fn in sorted(os.listdir(fold_submissions_dir)):
if fn.endswith('.csv') and not fn.startswith('.'):
src = os.path.join(fold_submissions_dir, fn)
dst = os.path.join(test_submissions_dir, fn)
shutil.copyfile(src, dst)
def inference_all_fold(args):
test_submissions_dir= os.path.join(args.workspace, 'appendixes', 'submissions', args.task_type,
'model_' + args.model + '_{}'.format(args.audio_type) + \
'_seed_{}'.format(args.seed), 'test')
gt_meta_dir = '/vol/vssp/AP_datasets/audio/dcase2019/task3/dataset_root/metadata_dev/'
sed_scores, doa_er_metric, seld_metric = evaluation.calculate_SELD_metrics(gt_meta_dir, test_submissions_dir, score_type='all')
loss = [0.0, 0.0, 0.0]
sed_mAP = [0.0, 0.0]
metrics = [loss, sed_mAP, sed_scores, doa_er_metric, seld_metric]
print('----------------------------------------------------------------------------------------------------------------------------------------------')
print_evaluation(metrics)
print('----------------------------------------------------------------------------------------------------------------------------------------------')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DCASE2019 task3')
subparsers = parser.add_subparsers(dest='mode')
parser_train = subparsers.add_parser('train')
parser_train.add_argument('--workspace', type=str, required=True,
help='workspace directory')
parser_train.add_argument('--feature_dir', type=str, required=True,
help='feature directory')
parser_train.add_argument('--feature_type', type=str, required=True,
choices=['logmel', 'logmelgcc'])
parser_train.add_argument('--audio_type', type=str, required=True,
choices=['foa', 'mic'], help='audio type')
parser_train.add_argument('--task_type', type=str, required=True,
choices=['sed_only', 'doa_only', 'two_staged_eval', 'seld'])
parser_train.add_argument('--fold', default=1, type=int,
help='fold for cross validation, if -1, use full data')
parser_train.add_argument('--seed', default='42', type=int,
help='random seed')
parser_inference = subparsers.add_parser('inference')
parser_inference.add_argument('--workspace', type=str, required=True,
help='workspace directory')
parser_inference.add_argument('--feature_dir', type=str, required=True,
help='feature directory')
parser_inference.add_argument('--feature_type', type=str, required=True,
choices=['logmel', 'logmelgcc'])
parser_inference.add_argument('--audio_type', type=str, required=True,
choices=['foa', 'mic'], help='audio type')
parser_inference.add_argument('--task_type', type=str, required=True,
choices=['sed_only', 'doa_only', 'two_staged_eval', 'seld'])
parser_inference.add_argument('--fold', default=1, type=int,
help='fold for cross validation, if -1, use full data')
parser_inference.add_argument('--iteration', default=5000, type=int,
help='which iteration model to read')
parser_inference.add_argument('--seed', default='42', type=int,
help='random seed')
parser_inference_all = subparsers.add_parser('inference_all')
parser_inference_all.add_argument('--workspace', type=str, required=True,
help='workspace directory')
parser_inference_all.add_argument('--audio_type', type=str, required=True,
choices=['foa', 'mic'], help='audio type')
parser_inference_all.add_argument('--task_type', type=str, required=True,
choices=['sed_only', 'doa_only', 'two_staged_eval', 'seld'])
parser_inference_all.add_argument('--seed', default='42', type=int,
help='random seed')
args = parser.parse_args()
'''
1. Miscellaneous
'''
args.fs = fs
args.nfft = nfft
args.hopsize = hopsize
args.mel_bins = mel_bins
args.chunklen = chunklen
args.hopframes = hopframes
args.cuda = torch.cuda.is_available()
args.batch_size = batch_size
args.lr = lr
args.weight_decay = weight_decay
args.hdf5 = hdf5_folder_name
if args.task_type == 'sed_only' or args.task_type == 'seld':
args.model = Model_SED
elif args.task_type == 'doa_only' or args.task_type == 'two_staged_eval':
args.model = Model_DOA
args.model_pool_type = model_pool_type
args.model_pool_size = model_pool_size
args.model_interp_ratio = model_interp_ratio
args.loss_type = loss_type
class_num = len(event_labels)
doa_num = len(doa_labels)
# inference all folds, otherwise train or inference single fold
if args.mode == 'inference_all':
inference_all_fold(args)
sys.exit()
# Get reproducible results by manually seed the random number generator
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
cudnn.deterministic=True
# logs directory
logs_dir = os.path.join(args.workspace, 'logs', args.task_type, args.mode,
'model_' + args.model + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) +
'_seed_{}'.format(args.seed))
create_logging(logs_dir, filemode='w')
logging.info(args)
# appendixes directory
global appendixes_dir
appendixes_dir = os.path.join(args.workspace, 'appendixes')
os.makedirs(appendixes_dir, exist_ok=True)
# submissions directory
global submissions_dir
submissions_dir = os.path.join(appendixes_dir, 'submissions')
os.makedirs(submissions_dir, exist_ok=True)
# pretrained path
global pretrained_path
pretrained_path = os.path.join(appendixes_dir, 'models_saved', 'sed_only',
'model_' + Model_SED + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) +
'_seed_{}'.format(args.seed), 'iter_50000.pth')
'''
2. Model
'''
global models_dir
if args.mode == 'train':
# models directory
models_dir = os.path.join(appendixes_dir, 'models_saved', '{}'.format(args.task_type),
'model_' + args.model + '_{}'.format(args.audio_type) + '_fold_{}'.format(args.fold) +
'_seed_{}'.format(args.seed))
os.makedirs(models_dir, exist_ok=True)
elif args.mode == 'inference':
# models directory
models_dir = os.path.join(appendixes_dir, 'models_saved')
logging.info('\n===> Building model')
model = models.__dict__[args.model](class_num, args.model_pool_type,
args.model_pool_size, args.model_interp_ratio, pretrained_path)
optimizer = optim.Adam(model.parameters(), lr=lr,
betas=(0.9, 0.999), eps=1e-08,
weight_decay=weight_decay, amsgrad=True)
if args.cuda:
logging.info('\nUtilize GPUs for computation')
logging.info('\nNumber of GPU available: {}'.format(torch.cuda.device_count()))
if torch.cuda.device_count() > 1:
Multi_GPU = True
else:
Multi_GPU = False
model.cuda()
# cudnn.benchmark = False # for cuda 10.0
model = torch.nn.DataParallel(model)
# Print the model architecture and parameters
logging.info('\nModel architectures:\n{}\n'.format(model))
# summary(model, (256, 128))
logging.info('\nParameters and size:')
for n, (name, param) in enumerate(model.named_parameters()):
logging.info('{}: {}'.format(name, list(param.size())))
parameter_num = sum([param.numel() for param in model.parameters()])
logging.info('\nTotal number of parameters: {}\n'.format(parameter_num))
'''
3. Data generator
'''
hdf5_dir = os.path.join(args.feature_dir, args.feature_type,
hdf5_folder_name, args.audio_type)
data_generator = DataGenerator(
args=args,
hdf5_dir=hdf5_dir,
logging=logging
)
'''
4. Train, test and evaluation
'''
if args.mode == 'train':
train(args, data_generator, model, optimizer, logging)
elif args.mode == 'inference':
inference(args, data_generator, logging)
else:
raise Exception('Error!')