-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
153 lines (129 loc) · 5.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import cv2
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=False, upsample=False, nobn=False):
super(BasicBlock, self).__init__()
self.upsample = upsample
self.downsample = downsample
self.nobn = nobn
if self.upsample:
self.conv1 = nn.ConvTranspose2d(inplanes, planes, 4, 2, 1)
else:
self.conv1 = conv3x3(inplanes, planes, stride)
if not self.nobn:
self.bn1 = nn.BatchNorm2d(inplanes)
self.relu = nn.ReLU(inplace=True)
if self.downsample:
self.conv2 =nn.Sequential(nn.AvgPool2d(2,2), conv3x3(planes, planes))
else:
self.conv2 = conv3x3(planes, planes)
if not self.nobn:
self.bn2 = nn.BatchNorm2d(planes)
if inplanes != planes or self.upsample or self.downsample:
if self.upsample:
self.skip = nn.ConvTranspose2d(inplanes, planes, 4, 2, 1)
elif self.downsample:
self.skip = nn.Sequential(nn.AvgPool2d(2,2), nn.Conv2d(inplanes, planes, 1, 1))
else:
self.skip = nn.Conv2d(inplanes, planes, 1, 1, 0)
else:
self.skip = None
self.stride = stride
def forward(self, x):
residual = x
if not self.nobn:
out = self.bn1(x)
out = self.relu(out)
else:
out = self.relu(x)
out = self.conv1(out)
if not self.nobn:
out = self.bn2(out)
out = self.relu(out)
out = self.conv2(out)
if self.skip is not None:
residual = self.skip(x)
out += residual
return out
class GEN_DEEP(nn.Module):
def __init__(self, ngpu=1):
super(GEN_DEEP, self).__init__()
self.ngpu = ngpu
res_units = [256, 128, 96]
inp_res_units = [
[256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256,
256], [256, 128, 128], [128, 96, 96]]
self.layers_set = []
self.layers_set_up = []
self.layers_set_final = nn.ModuleList()
self.layers_set_final_up = nn.ModuleList()
self.a1 = nn.Sequential(nn.Conv2d(256, 128, 1, 1))
self.a2 = nn.Sequential(nn.Conv2d(128, 96, 1, 1))
self.layers_in = conv3x3(3, 256)
layers = []
for ru in range(len(res_units) - 1):
nunits = res_units[ru]
curr_inp_resu = inp_res_units[ru]
self.layers_set.insert(ru, [])
self.layers_set_up.insert(ru, [])
if ru == 0:
num_blocks_level = 12
else:
num_blocks_level = 3
for j in range(num_blocks_level):
# if curr_inp_resu[j]==3:
self.layers_set[ru].append(BasicBlock(curr_inp_resu[j], nunits))
# else:
# layers.append(MyBlock(curr_inp_resu[j], nunits))
self.layers_set_up[ru].append(nn.Upsample(scale_factor=2, mode='bilinear',align_corners=True))
self.layers_set_up[ru].append(nn.BatchNorm2d(nunits))
self.layers_set_up[ru].append(nn.ReLU(True))
self.layers_set_up[ru].append(nn.ConvTranspose2d(nunits, nunits, kernel_size=1, stride=1))
self.layers_set_final.append(nn.Sequential(*self.layers_set[ru]))
self.layers_set_final_up.append(nn.Sequential(*self.layers_set_up[ru]))
nunits = res_units[-1]
layers.append(conv3x3(inp_res_units[-1][0], nunits))
layers.append(nn.ReLU(True))
layers.append(nn.Conv2d(inp_res_units[-1][1], nunits, kernel_size=1, stride=1))
layers.append(nn.ReLU(True))
layers.append(nn.Conv2d(nunits, 3, kernel_size=1, stride=1))
layers.append(nn.Tanh())
self.main = nn.Sequential(*layers)
def forward(self, input):
x = self.layers_in(input)
for ru in range(len(self.layers_set_final)):
if ru == 0:
temp = self.layers_set_final[ru](x)
x = x + temp
elif ru == 1:
temp = self.layers_set_final[ru](x)
temp2 = self.a1(x)
x = temp + temp2
elif ru == 2:
temp = self.layers_set_final[ru](x)
temp2 = self.a2(x)
x = temp + temp2
x = self.layers_set_final_up[ru](x)
x = self.main(x)
return x
if __name__ == "__main__":
net = GEN_DEEP().cuda()
X = np.random.randn(1, 3, 16, 16).astype(np.float32) # B, C, H, W
X = torch.from_numpy(X).cuda()
Y = net(X)
print(Y.shape)
Xim = X.cpu().numpy().squeeze().transpose(1,2,0)
Yim = Y.detach().cpu().numpy().squeeze().transpose(1,2,0)
Xim = (Xim - Xim.min()) / (Xim.max() - Xim.min())
Yim = (Yim - Yim.min()) / (Yim.max() - Yim.min())
cv2.imshow("X", Xim)
cv2.imshow("Y", Yim)
cv2.waitKey()
print("finished.")