Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The accuracy is 0 #76

Open
jiameixia1202 opened this issue Dec 7, 2020 · 8 comments
Open

The accuracy is 0 #76

jiameixia1202 opened this issue Dec 7, 2020 · 8 comments

Comments

@jiameixia1202
Copy link

My server does not have 8 GPUs. When I use 4 GPUs for training (without any modification to the network), I just change num-gpus to 4. After training, the segmentation accuracy is always 0.00. Do you need to modify other parameters?

@haderalim
Copy link

Did you update of the registered coco dataset? And what parameters and its values, you used in config file?

@jiameixia1202
Copy link
Author

The following are the parameters we used in training without any modification. I don't quite understand what you mean by "the registered coco dataset"

/root/anaconda3/envs/detectron2/bin/python3.6 /jmx/centermask2/train_net.py --config-file configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml --num-gpus 4
Command Line Args: Namespace(config_file='configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=[], resume=False)
Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2.
Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2.
Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2.
Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2.
[12/08 18:45:25 detectron2]: Rank of current process: 0. World size: 4
[12/08 18:45:27 detectron2]: Environment info:


sys.platform linux
Python 3.6.12 |Anaconda, Inc.| (default, Sep 8 2020, 23:10:56) [GCC 7.3.0]
numpy 1.19.4
detectron2 0.3 @/jmx/detectron2/detectron2
Compiler GCC 7.4
CUDA compiler CUDA 10.1
detectron2 arch flags 6.1
DETECTRON2_ENV_MODULE
PyTorch 1.6.0+cu101 @/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch
PyTorch debug build False
GPU available True
GPU 0,1,2,3 GeForce GTX 1080 (arch=6.1)
CUDA_HOME /usr/local/cuda
Pillow 8.0.1
torchvision 0.7.0+cu101 @/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torchvision
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5
fvcore 0.1.2.post20201122
cv2 4.4.0


PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
  • CuDNN 7.6.3
  • Magma 2.5.2
  • Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,

[12/08 18:45:27 detectron2]: Command line arguments: Namespace(config_file='configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=[], resume=False)
[12/08 18:45:27 detectron2]: Contents of args.config_file=configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml:
BASE: "Base-CenterMask-Lite-VoVNet.yaml"

MODEL:
WEIGHTS: "/jmx/centermask2/models/vovnet19_ese_detectron2.pth"
VOVNET:
CONV_BODY : "V-19-eSE"
SOLVER:
STEPS: (300000, 340000)
MAX_ITER: 360000
OUTPUT_DIR: "output/centermask/CenterMask-Lite-V-19-ms-4x"

[12/08 18:45:27 detectron2]: Running with full config:
CUDNN_BENCHMARK: False
DATALOADER:
ASPECT_RATIO_GROUPING: True
FILTER_EMPTY_ANNOTATIONS: True
NUM_WORKERS: 0
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
DATASETS:
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: ()
PROPOSAL_FILES_TRAIN: ()
TEST: ('coco_2017_val',)
TRAIN: ('coco_2017_train',)
GLOBAL:
HACK: 1.0
INPUT:
CROP:
ENABLED: False
SIZE: [0.9, 0.9]
TYPE: relative_range
FORMAT: BGR
MASK_FORMAT: polygon
MAX_SIZE_TEST: 1000
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 600
MIN_SIZE_TRAIN: (580, 600)
MIN_SIZE_TRAIN_SAMPLING: choice
RANDOM_FLIP: horizontal
MODEL:
ANCHOR_GENERATOR:
ANGLES: [[-90, 0, 90]]
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
NAME: DefaultAnchorGenerator
OFFSET: 0.0
SIZES: [[32, 64, 128, 256, 512]]
BACKBONE:
FREEZE_AT: 0
NAME: build_fcos_vovnet_fpn_backbone
DEVICE: cuda
FCOS:
CENTER_SAMPLE: True
FPN_STRIDES: [8, 16, 32, 64, 128]
INFERENCE_TH_TEST: 0.05
INFERENCE_TH_TRAIN: 0.05
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
LOC_LOSS_TYPE: giou
LOSS_ALPHA: 0.25
LOSS_GAMMA: 2.0
NMS_TH: 0.6
NORM: GN
NUM_BOX_CONVS: 2
NUM_CLASSES: 80
NUM_CLS_CONVS: 2
NUM_SHARE_CONVS: 0
POST_NMS_TOPK_TEST: 50
POST_NMS_TOPK_TRAIN: 100
POS_RADIUS: 1.5
PRE_NMS_TOPK_TEST: 1000
PRE_NMS_TOPK_TRAIN: 1000
PRIOR_PROB: 0.01
SIZES_OF_INTEREST: [64, 128, 256, 512]
THRESH_WITH_CTR: False
TOP_LEVELS: 2
USE_DEFORMABLE: False
USE_RELU: True
USE_SCALE: True
FPN:
FUSE_TYPE: sum
IN_FEATURES: ['stage3', 'stage4', 'stage5']
NORM:
OUT_CHANNELS: 128
KEYPOINT_ON: False
LOAD_PROPOSALS: False
MASKIOU_LOSS_WEIGHT: 1.0
MASKIOU_ON: True
MASK_ON: True
META_ARCHITECTURE: GeneralizedRCNN
MOBILENET: False
PANOPTIC_FPN:
COMBINE:
ENABLED: True
INSTANCES_CONFIDENCE_THRESH: 0.5
OVERLAP_THRESH: 0.5
STUFF_AREA_LIMIT: 4096
INSTANCE_LOSS_WEIGHT: 1.0
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [1.0, 1.0, 1.0]
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: FCOS
RESNETS:
DEFORM_MODULATED: False
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE: [False, False, False, False]
DEPTH: 50
NORM: FrozenBN
NUM_GROUPS: 1
OUT_FEATURES: ['res4']
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: True
WIDTH_PER_GROUP: 64
RETINANET:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
FOCAL_LOSS_ALPHA: 0.25
FOCAL_LOSS_GAMMA: 2.0
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
IOU_LABELS: [0, -1, 1]
IOU_THRESHOLDS: [0.4, 0.5]
NMS_THRESH_TEST: 0.5
NORM:
NUM_CLASSES: 80
NUM_CONVS: 4
PRIOR_PROB: 0.01
SCORE_THRESH_TEST: 0.05
SMOOTH_L1_LOSS_BETA: 0.1
TOPK_CANDIDATES_TEST: 1000
ROI_BOX_CASCADE_HEAD:
BBOX_REG_WEIGHTS: ((10.0, 10.0, 5.0, 5.0), (20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0))
IOUS: (0.5, 0.6, 0.7)
ROI_BOX_HEAD:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
CLS_AGNOSTIC_BBOX_REG: False
CONV_DIM: 256
FC_DIM: 1024
NAME:
NORM:
NUM_CONV: 0
NUM_FC: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
SMOOTH_L1_BETA: 0.0
TRAIN_ON_PRED_BOXES: False
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
IN_FEATURES: ['p3', 'p4', 'p5']
IOU_LABELS: [0, 1]
IOU_THRESHOLDS: [0.5]
NAME: CenterROIHeads
NMS_THRESH_TEST: 0.5
NUM_CLASSES: 80
POSITIVE_FRACTION: 0.25
PROPOSAL_APPEND_GT: True
SCORE_THRESH_TEST: 0.05
ROI_KEYPOINT_HEAD:
ASSIGN_CRITERION: ratio
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
LOSS_WEIGHT: 1.0
MIN_KEYPOINTS_PER_IMAGE: 1
NAME: KRCNNConvDeconvUpsampleHead
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
NUM_KEYPOINTS: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
ROI_MASKIOU_HEAD:
CONV_DIM: 128
NAME: MaskIoUHead
NUM_CONV: 2
ROI_MASK_HEAD:
ASSIGN_CRITERION: ratio
CLS_AGNOSTIC_MASK: False
CONV_DIM: 128
NAME: SpatialAttentionMaskHead
NORM:
NUM_CONV: 2
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
RPN:
BATCH_SIZE_PER_IMAGE: 256
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
BOUNDARY_THRESH: -1
HEAD_NAME: StandardRPNHead
IN_FEATURES: ['res4']
IOU_LABELS: [0, -1, 1]
IOU_THRESHOLDS: [0.3, 0.7]
LOSS_WEIGHT: 1.0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOPK_TEST: 1000
POST_NMS_TOPK_TRAIN: 2000
PRE_NMS_TOPK_TEST: 6000
PRE_NMS_TOPK_TRAIN: 12000
SMOOTH_L1_BETA: 0.0
SEM_SEG_HEAD:
COMMON_STRIDE: 4
CONVS_DIM: 128
IGNORE_VALUE: 255
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
LOSS_WEIGHT: 1.0
NAME: SemSegFPNHead
NORM: GN
NUM_CLASSES: 54
VOVNET:
BACKBONE_OUT_CHANNELS: 256
CONV_BODY: V-19-eSE
DEFORMABLE_GROUPS: 1
NORM: FrozenBN
OUT_CHANNELS: 256
OUT_FEATURES: ['stage3', 'stage4', 'stage5']
STAGE_WITH_DCN: (False, False, False, False)
WITH_MODULATED_DCN: False
WEIGHTS: /jmx/centermask2/models/vovnet19_ese_detectron2.pth
OUTPUT_DIR: output/centermask/CenterMask-Lite-V-19-ms-4x
SEED: -1
SOLVER:
AMP:
ENABLED: False
BASE_LR: 0.01
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 10000
CLIP_GRADIENTS:
CLIP_TYPE: value
CLIP_VALUE: 1.0
ENABLED: False
NORM_TYPE: 2.0
GAMMA: 0.1
IMS_PER_BATCH: 16
LR_SCHEDULER_NAME: WarmupMultiStepLR
MAX_ITER: 360000
MOMENTUM: 0.9
NESTEROV: False
REFERENCE_WORLD_SIZE: 0
STEPS: (300000, 340000)
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 1000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: False
FLIP: True
MAX_SIZE: 4000
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
DETECTIONS_PER_IMAGE: 100
EVAL_PERIOD: 0
EXPECTED_RESULTS: []
KEYPOINT_OKS_SIGMAS: []
PRECISE_BN:
ENABLED: False
NUM_ITER: 200
VERSION: 2
VIS_PERIOD: 0
[12/08 18:45:27 detectron2]: Full config saved to output/centermask/CenterMask-Lite-V-19-ms-4x/config.yaml
[12/08 18:45:27 d2.utils.env]: Using a generated random seed 27801612
[12/08 18:45:28 d2.engine.defaults]: Model:
GeneralizedRCNN(
(backbone): FPN(
(fpn_lateral3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral4): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral5): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(top_block): LastLevelP6P7(
(p6): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(p7): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bottom_up): VoVNet(
(stem): Sequential(
(stem_1/conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(stem_1/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(stem_1/relu): ReLU(inplace=True)
(stem_2/conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(stem_2/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(stem_2/relu): ReLU(inplace=True)
(stem_3/conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(stem_3/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(stem_3/relu): ReLU(inplace=True)
)
(stage2): _OSA_stage(
(OSA2_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA2_1_0/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_0/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA2_1_1/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_1/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA2_1_2/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_2/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA2_1_concat/conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA2_1_concat/norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(OSA2_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage3): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA3_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA3_1_0/conv): Conv2d(256, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_0/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA3_1_1/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_1/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA3_1_2/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_2/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA3_1_concat/conv): Conv2d(736, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA3_1_concat/norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(OSA3_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage4): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA4_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA4_1_0/conv): Conv2d(512, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_0/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA4_1_1/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_1/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA4_1_2/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_2/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA4_1_concat/conv): Conv2d(1088, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA4_1_concat/norm): FrozenBatchNorm2d(num_features=768, eps=1e-05)
(OSA4_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage5): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA5_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA5_1_0/conv): Conv2d(768, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_0/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA5_1_1/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_1/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA5_1_2/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_2/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA5_1_concat/conv): Conv2d(1440, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA5_1_concat/norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(OSA5_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
)
)
(proposal_generator): FCOS(
(iou_loss): IOULoss()
(fcos_head): FCOSHead(
(cls_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(bbox_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(share_tower): Sequential()
(cls_logits): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bbox_pred): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ctrness): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(scales): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
(3): Scale()
(4): Scale()
)
)
)
(roi_heads): CenterROIHeads(
(mask_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
)
)
(mask_head): SpatialAttentionMaskHead(
(mask_fcn1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(mask_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(spatialAtt): SpatialAttention(
(conv): Conv2d(2, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(sigmoid): Sigmoid()
)
(deconv): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2))
(predictor): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1))
)
(maskiou_head): MaskIoUHead(
(maskiou_fcn1): Conv2d(129, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maskiou_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(maskiou_fc1): Linear(in_features=6272, out_features=1024, bias=True)
(maskiou_fc2): Linear(in_features=1024, out_features=1024, bias=True)
(maskiou): Linear(in_features=1024, out_features=80, bias=True)
(pooling): MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=False)
)
)
)
[12/08 18:45:28 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(580, 600), max_size=1000, sample_style='choice'), RandomFlip()]
[12/08 18:46:12 d2.data.datasets.coco]: Loading datasets/coco/annotations/instances_train2017.json takes 44.32 seconds.
[12/08 18:46:14 d2.data.datasets.coco]: Loaded 118287 images in COCO format from datasets/coco/annotations/instances_train2017.json
[12/08 18:46:38 d2.data.build]: Removed 1021 images with no usable annotations. 117266 images left.
[12/08 18:46:52 d2.data.build]: Distribution of instances among all 80 categories:

category #instances category #instances category #instances
person 257253 bicycle 7056 car 43533
motorcycle 8654 airplane 5129 bus 6061
train 4570 truck 9970 boat 10576
traffic light 12842 fire hydrant 1865 stop sign 1983
parking meter 1283 bench 9820 bird 10542
cat 4766 dog 5500 horse 6567
sheep 9223 cow 8014 elephant 5484
bear 1294 zebra 5269 giraffe 5128
backpack 8714 umbrella 11265 handbag 12342
tie 6448 suitcase 6112 frisbee 2681
skis 6623 snowboard 2681 sports ball 6299
kite 8802 baseball bat 3273 baseball gl.. 3747
skateboard 5536 surfboard 6095 tennis racket 4807
bottle 24070 wine glass 7839 cup 20574
fork 5474 knife 7760 spoon 6159
bowl 14323 banana 9195 apple 5776
sandwich 4356 orange 6302 broccoli 7261
carrot 7758 hot dog 2884 pizza 5807
donut 7005 cake 6296 chair 38073
couch 5779 potted plant 8631 bed 4192
dining table 15695 toilet 4149 tv 5803
laptop 4960 mouse 2261 remote 5700
keyboard 2854 cell phone 6422 microwave 1672
oven 3334 toaster 225 sink 5609
refrigerator 2634 book 24077 clock 6320
vase 6577 scissors 1464 teddy bear 4729
hair drier 198 toothbrush 1945
total 849949
[12/08 18:46:52 d2.data.build]: Using training sampler TrainingSampler
[12/08 18:46:53 d2.data.common]: Serializing 117266 elements to byte tensors and concatenating them all ...
[12/08 18:47:04 d2.data.common]: Serialized dataset takes 451.21 MiB
[12/08 18:47:13 d2.engine.defaults]: Model:
GeneralizedRCNN(
(backbone): FPN(
(fpn_lateral3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral4): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral5): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(top_block): LastLevelP6P7(
  (p6): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (p7): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bottom_up): VoVNet(
  (stem): Sequential(
    (stem_1/conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (stem_1/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
    (stem_1/relu): ReLU(inplace=True)
    (stem_2/conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (stem_2/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
    (stem_2/relu): ReLU(inplace=True)
    (stem_3/conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (stem_3/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
    (stem_3/relu): ReLU(inplace=True)
  )
  (stage2): _OSA_stage(
    (OSA2_1): _OSA_module(
      (layers): ModuleList(
        (0): Sequential(
          (OSA2_1_0/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA2_1_0/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          (OSA2_1_0/relu): ReLU(inplace=True)
        )
        (1): Sequential(
          (OSA2_1_1/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA2_1_1/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          (OSA2_1_1/relu): ReLU(inplace=True)
        )
        (2): Sequential(
          (OSA2_1_2/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA2_1_2/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          (OSA2_1_2/relu): ReLU(inplace=True)
        )
      )
      (concat): Sequential(
        (OSA2_1_concat/conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (OSA2_1_concat/norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
        (OSA2_1_concat/relu): ReLU(inplace=True)
      )
      (ese): eSEModule(
        (avg_pool): AdaptiveAvgPool2d(output_size=1)
        (fc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
        (hsigmoid): Hsigmoid()
      )
    )
  )
  (stage3): _OSA_stage(
    (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
    (OSA3_1): _OSA_module(
      (layers): ModuleList(
        (0): Sequential(
          (OSA3_1_0/conv): Conv2d(256, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA3_1_0/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
          (OSA3_1_0/relu): ReLU(inplace=True)
        )
        (1): Sequential(
          (OSA3_1_1/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA3_1_1/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
          (OSA3_1_1/relu): ReLU(inplace=True)
        )
        (2): Sequential(
          (OSA3_1_2/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA3_1_2/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
          (OSA3_1_2/relu): ReLU(inplace=True)
        )
      )
      (concat): Sequential(
        (OSA3_1_concat/conv): Conv2d(736, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (OSA3_1_concat/norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
        (OSA3_1_concat/relu): ReLU(inplace=True)
      )
      (ese): eSEModule(
        (avg_pool): AdaptiveAvgPool2d(output_size=1)
        (fc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
        (hsigmoid): Hsigmoid()
      )
    )
  )
  (stage4): _OSA_stage(
    (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
    (OSA4_1): _OSA_module(
      (layers): ModuleList(
        (0): Sequential(
          (OSA4_1_0/conv): Conv2d(512, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA4_1_0/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
          (OSA4_1_0/relu): ReLU(inplace=True)
        )
        (1): Sequential(
          (OSA4_1_1/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA4_1_1/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
          (OSA4_1_1/relu): ReLU(inplace=True)
        )
        (2): Sequential(
          (OSA4_1_2/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA4_1_2/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
          (OSA4_1_2/relu): ReLU(inplace=True)
        )
      )
      (concat): Sequential(
        (OSA4_1_concat/conv): Conv2d(1088, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (OSA4_1_concat/norm): FrozenBatchNorm2d(num_features=768, eps=1e-05)
        (OSA4_1_concat/relu): ReLU(inplace=True)
      )
      (ese): eSEModule(
        (avg_pool): AdaptiveAvgPool2d(output_size=1)
        (fc): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
        (hsigmoid): Hsigmoid()
      )
    )
  )
  (stage5): _OSA_stage(
    (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
    (OSA5_1): _OSA_module(
      (layers): ModuleList(
        (0): Sequential(
          (OSA5_1_0/conv): Conv2d(768, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA5_1_0/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
          (OSA5_1_0/relu): ReLU(inplace=True)
        )
        (1): Sequential(
          (OSA5_1_1/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA5_1_1/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
          (OSA5_1_1/relu): ReLU(inplace=True)
        )
        (2): Sequential(
          (OSA5_1_2/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (OSA5_1_2/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
          (OSA5_1_2/relu): ReLU(inplace=True)
        )
      )
      (concat): Sequential(
        (OSA5_1_concat/conv): Conv2d(1440, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (OSA5_1_concat/norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
        (OSA5_1_concat/relu): ReLU(inplace=True)
      )
      (ese): eSEModule(
        (avg_pool): AdaptiveAvgPool2d(output_size=1)
        (fc): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
        (hsigmoid): Hsigmoid()
      )
    )
  )
)

)
(proposal_generator): FCOS(
(iou_loss): IOULoss()
(fcos_head): FCOSHead(
(cls_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(bbox_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(share_tower): Sequential()
(cls_logits): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bbox_pred): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ctrness): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(scales): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
(3): Scale()
(4): Scale()
)
)
)
(roi_heads): CenterROIHeads(
(mask_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
)
)
(mask_head): SpatialAttentionMaskHead(
(mask_fcn1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(mask_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(spatialAtt): SpatialAttention(
(conv): Conv2d(2, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(sigmoid): Sigmoid()
)
(deconv): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2))
(predictor): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1))
)
(maskiou_head): MaskIoUHead(
(maskiou_fcn1): Conv2d(129, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maskiou_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(maskiou_fc1): Linear(in_features=6272, out_features=1024, bias=True)
(maskiou_fc2): Linear(in_features=1024, out_features=1024, bias=True)
(maskiou): Linear(in_features=1024, out_features=80, bias=True)
(pooling): MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=False)
)
)
)
[12/08 18:47:13 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(580, 600), max_size=1000, sample_style='choice'), RandomFlip()]
[12/08 18:47:55 d2.data.datasets.coco]: Loading datasets/coco/annotations/instances_train2017.json takes 41.12 seconds.
[12/08 18:47:56 d2.data.datasets.coco]: Loaded 118287 images in COCO format from datasets/coco/annotations/instances_train2017.json
[12/08 18:48:20 d2.data.build]: Removed 1021 images with no usable annotations. 117266 images left.
[12/08 18:48:33 d2.data.build]: Using training sampler TrainingSampler
[12/08 18:48:34 d2.data.common]: Serializing 117266 elements to byte tensors and concatenating them all ...
[12/08 18:48:45 d2.data.common]: Serialized dataset takes 451.21 MiB
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[12/08 18:48:54 fvcore.common.checkpoint]: Loading checkpoint from /jmx/centermask2/models/vovnet19_ese_detectron2.pth
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(
, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[12/08 18:48:54 fvcore.common.checkpoint]: Some model parameters or buffers are not found in the checkpoint:
roi_heads.mask_head.mask_fcn2.{bias, weight}
proposal_generator.fcos_head.cls_tower.1.{weight, bias}
roi_heads.maskiou_head.maskiou.{weight, bias}
proposal_generator.fcos_head.ctrness.{weight, bias}
roi_heads.maskiou_head.maskiou_fc1.{weight, bias}
backbone.fpn_lateral3.{weight, bias}
roi_heads.mask_head.spatialAtt.conv.weight
backbone.top_block.p6.{bias, weight}
roi_heads.maskiou_head.maskiou_fcn1.{weight, bias}
proposal_generator.fcos_head.cls_logits.{weight, bias}
backbone.top_block.p7.{bias, weight}
proposal_generator.fcos_head.bbox_tower.1.{weight, bias}
proposal_generator.fcos_head.scales.1.scale
proposal_generator.fcos_head.bbox_tower.4.{bias, weight}
proposal_generator.fcos_head.bbox_pred.{bias, weight}
proposal_generator.fcos_head.scales.2.scale
backbone.fpn_lateral5.{bias, weight}
roi_heads.maskiou_head.maskiou_fcn2.{bias, weight}
backbone.fpn_lateral4.{bias, weight}
roi_heads.mask_head.deconv.{weight, bias}
roi_heads.mask_head.mask_fcn1.{bias, weight}
proposal_generator.fcos_head.scales.3.scale
roi_heads.mask_head.predictor.{weight, bias}
backbone.fpn_output3.{weight, bias}
proposal_generator.fcos_head.cls_tower.3.{bias, weight}
proposal_generator.fcos_head.scales.0.scale
proposal_generator.fcos_head.bbox_tower.0.{weight, bias}
backbone.fpn_output5.{bias, weight}
proposal_generator.fcos_head.cls_tower.0.{weight, bias}
proposal_generator.fcos_head.cls_tower.4.{bias, weight}
roi_heads.maskiou_head.maskiou_fc2.{bias, weight}
backbone.fpn_output4.{bias, weight}
proposal_generator.fcos_head.bbox_tower.3.{bias, weight}
proposal_generator.fcos_head.scales.4.scale
[12/08 18:48:54 fvcore.common.checkpoint]: The checkpoint state_dict contains keys that are not used by the model:
backbone.bottom_up.stem.stem_1/norm.num_batches_tracked
backbone.bottom_up.stem.stem_2/norm.num_batches_tracked
backbone.bottom_up.stem.stem_3/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.0.OSA2_1_0/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.1.OSA2_1_1/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.2.OSA2_1_2/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.concat.OSA2_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.0.OSA3_1_0/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.1.OSA3_1_1/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.2.OSA3_1_2/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.concat.OSA3_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.0.OSA4_1_0/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.1.OSA4_1_1/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.2.OSA4_1_2/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.concat.OSA4_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.0.OSA5_1_0/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.1.OSA5_1_1/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.2.OSA5_1_2/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.concat.OSA5_1_concat/norm.num_batches_tracked
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(
, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
[12/08 18:49:08 d2.utils.events]: eta: 2 days, 12:45:56 iter: 19 total_loss: 3.564 loss_mask: 0.6932 loss_maskiou: 0.06747 loss_fcos_cls: 1.14 loss_fcos_loc: 0.9648 loss_fcos_ctr: 0.6922 time: 0.6086 data_time: 0.2780 lr: 1e-05 max_mem: 2960M
[12/08 18:49:08 d2.utils.events]: eta: 2 days, 13:25:44 iter: 19 total_loss: 3.564 loss_mask: 0.6932 loss_maskiou: 0.06747 loss_fcos_cls: 1.14 loss_fcos_loc: 0.9648 loss_fcos_ctr: 0.6922 time: 0.6118 data_time: 0.2780 lr: 1e-05 max_mem: 2960M

@haderalim
Copy link

@jiameixia1202 I mean by "the registered coco dataset" you use coco dataset not custom dataset.

You can debug and check the pre_nms_top_n value in ''centermask/modeling/fcos/fcos_outputs/'

lines are:-
candidate_inds = box_cls > self.pre_nms_thresh
pre_nms_top_n = candidate_inds.view(N, -1).sum(1)

When cfg.SCORE_THRESH_TEST = 0.05 then self.pre_nms_thresh = 0.05. This value may cause of make pre_nms_top_n empty and make zero accuracy.

So, check if pre_nms_top_n is tensor([0, 0] or not.

@jiameixia1202
Copy link
Author

I use the registered coco dataset, and I check the pre_ nms_ top_ n is tensor([0, 0] .

It is normal for me to test with the weight provided by you, but when I train myself, the accuracy is 0 (without modifying the network, data and parameters)

@jiameixia1202
Copy link
Author

cfg.SCORE_THRESH_TEST = 0.05 then self.pre_nms_thresh = 0.05 How do I modify these two parameters?

@haderalim
Copy link

You can modify it through config file ''configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' under MODEL and FCOS. If FCOS not exist, add it and modify the value 0.05 of INFERENCE_TH_TRAIN and INFERENCE_TH_TEST.

Like this:
MODEL:
FCOS:
INFERENCE_TH_TRAIN: 0.05
INFERENCE_TH_TEST: 0.05

@jiameixia1202
Copy link
Author

I'm sorry, there may be something wrong with what I just said,
My current settings cfg.SCORE_ THRESH_ TEST = 0.05 then self.pre_ nms_ thresh = 0.05
You said this value may cause of make pre_ nms_ top_ n empty and make zero accuracy.
I wonder why I can avoid this problem by modifying these two values

@Paragjain10
Copy link

You can modify it through config file ''configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' under MODEL and FCOS. If FCOS not exist, add it and modify the value 0.05 of INFERENCE_TH_TRAIN and INFERENCE_TH_TEST.

Like this:
MODEL:
FCOS:
INFERENCE_TH_TRAIN: 0.05
INFERENCE_TH_TEST: 0.05

can we change the optimizer to Adam?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants