-
Notifications
You must be signed in to change notification settings - Fork 1
/
appveyor.yml
96 lines (75 loc) · 2.81 KB
/
appveyor.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# AppVeyor.com is a Continuous Integration service to build and run tests under
# Windows
environment:
global:
CMD_IN_ENV: "cmd /E:ON /V:ON /C .\\ci_scripts\\appveyor\\run_with_env.cmd"
# SDK v7.0 MSVC Express 2008's SetEnv.cmd script will fail if the
# /E:ON and /V:ON options are not enabled in the batch script interpreter
# See: http://stackoverflow.com/a/13751649/163740
WHEELHOUSE_UPLOADER_USERNAME: ysig
MODULE: stream_graph
PROJECT_NAME: stream_graph
TWINE_USERNAME: ysig
matrix:
- PYTHON_VERSION: "3.5.3"
PYTHON_ARCH: "64"
MINICONDA: "C:\\Miniconda35-x64"
DEPLOY_WHEEL: "false"
- PYTHON_VERSION: "3.6.4"
PYTHON_ARCH: "64"
MINICONDA: "C:\\Miniconda36-x64"
DEPLOY_WHEEL: "false"
- PYTHON_VERSION: "3.7.4"
PYTHON_ARCH: "64"
MINICONDA: "C:\\Miniconda37-x64"
DEPLOY_WHEEL: "false"
install:
# Initialise conda
- "set PATH=%MINICONDA%;%MINICONDA%\\Scripts;%PATH%"
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
- conda info -a
# Make venv and install dependencies
- "conda create -q -n stream_graph python=%PYTHON_VERSION%"
- "conda install -n stream_graph pip \"pandas\" \"future>=0.16.0\" \"six>=1.11.0\" \"numpy>=1.14.0\" \"cython>=0.27.3\" \"nose>=1.1.2\" setuptools wheel"
- "conda update -n stream_graph setuptools wheel"
- "activate stream_graph"
- "pip install wheelhouse_uploader nose-timer --upgrade"
# Check that we have the expected version and architecture for Python
- "python --version"
- "python -c \"import struct; print(struct.calcsize('P') * 8)\""
- "pip --version"
# Install project
- "%CMD_IN_ENV% python setup.py bdist_wheel bdist_wininst"
- ps: "ls dist"
# Install the generated wheel package to test it
- "pip install --pre --no-index --find-links dist %PROJECT_NAME%"
# Not a .NET project, we build scikit-learn in the install step instead
build: false
artifacts:
# Archive the generated wheel package in the ci.appveyor.com build report.
- path: dist\*
on_success:
# Upload the generated wheel to pypi
- >
IF "%DEPLOY_WHEEL%" == "true"
(
cd %APPVEYOR_BUILD_FOLDER%
&&
python -m pip install twine
&&
python -m twine upload dist/*.whl && exit 0
)
test_script:
# Change to a non-source folder to make sure we run the tests on the installed library.
- "mkdir empty_folder"
- "cd empty_folder"
- "python -c \"import nose; nose.main()\" --with-timer --timer-top-n 120 -s -v %MODULE%.test"
# Move back to the project folder
- "cd .."
cache:
# Use the appveyor cache to avoid re-downloading large archives such
# the MKL numpy and scipy wheels mirrored on a rackspace cloud
# container, speed up the appveyor jobs and reduce bandwidth
# usage on our rackspace account.
- '%APPDATA%\pip\Cache'