-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDQN_torch.py
147 lines (111 loc) · 6.45 KB
/
DQN_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
from torch_networks import DQN_fc_network, DQN_dueling_network
from helper_functions import SlidingMemory, PERMemory
class DQN():
def __init__(self, state_dim, action_dim, mem_size = 10000, train_batch_size = 32,
gamma = 0.99, lr = 1e-3, tau = 0.1,
if_dueling = False, if_PER = False, load_path = None ):
self.mem_size, self.train_batch_size = mem_size, train_batch_size
self.gamma, self.lr = gamma, lr
self.global_step = 0
self.tau = tau
self.state_dim, self.action_dim = state_dim, action_dim
self.if_PER = if_PER
self.replay_mem = PERMemory(mem_size) if if_PER else SlidingMemory(mem_size)
self.policy_net = DQN_fc_network(state_dim, action_dim,1)
self.target_net = DQN_fc_network(state_dim, action_dim,1)
self.epsilon, self.min_eps = 0.9, 0.4
if load_path is not None:
self.policy_net.load_state_dict(torch.load(load_path))
if if_dueling:
self.policy_net = DQN_dueling_network(state_dim, action_dim,1)
self.target_net = DQN_dueling_network(state_dim, action_dim,1)
self.optimizer = optim.RMSprop(self.policy_net.parameters(), self.lr)
self.hard_update(self.target_net, self.policy_net)
def soft_update(self, target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(self, target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
# training process
def train(self, pre_state, action, reward, next_state, if_end):
self.replay_mem.add(pre_state, action, reward, next_state, if_end)
if self.replay_mem.num() < self.mem_size:
return
# sample $self.train_batch_size$ samples from the replay memory, and use them to train
if not self.if_PER:
train_batch = self.replay_mem.sample(self.train_batch_size)
else:
train_batch, idx_batch, weight_batch = self.replay_mem.sample(self.train_batch_size)
weight_batch = torch.tensor(weight_batch, dtype = torch.float).unsqueeze(1)
# adjust dtype to suit the gym default dtype
pre_state_batch = torch.tensor([x[0] for x in train_batch], dtype=torch.float)
action_batch = torch.tensor([x[1] for x in train_batch], dtype = torch.long) # dtype = long for gater
reward_batch = torch.tensor([x[2] for x in train_batch], dtype=torch.float).view(self.train_batch_size,1)
next_state_batch = torch.tensor([x[3] for x in train_batch], dtype=torch.float)
if_end = [x[4] for x in train_batch]
if_end = torch.tensor(np.array(if_end).astype(float), dtype=torch.float).view(self.train_batch_size,1)
# use the target_Q_network to get the target_Q_value
# torch.max[0] gives the max value, torch.max[1] gives the argmax index
# vanilla dqn
#q_target_ = self.target_net(next_state_batch).max(1)[0].detach() # detach to not bother the gradient
#q_target_ = q_target_.view(self.train_batch_size,1)
# double dqn
with torch.no_grad():
next_best_action = self.policy_net(next_state_batch).max(1)[1].detach()
q_target_ = self.target_net(next_state_batch).gather(1, next_best_action.unsqueeze(1))
q_target_ = q_target_.view(self.train_batch_size,1).detach()
q_target = self.gamma * q_target_ * ( 1 - if_end) + reward_batch
# unsqueeze to make gather happy
q_pred = self.policy_net(pre_state_batch).gather(1, action_batch.unsqueeze(1))
if self.if_PER:
TD_error_batch = np.abs(q_target.numpy() - q_pred.detach().numpy())
self.replay_mem.update(idx_batch, TD_error_batch)
self.optimizer.zero_grad()
loss = (q_pred - q_target) ** 2
if self.if_PER:
loss *= weight_batch
loss = torch.mean(loss)
loss.backward()
torch.nn.utils.clip_grad_norm(self.policy_net.parameters(), 1)
self.optimizer.step()
# update target network
self.soft_update(self.target_net, self.policy_net, self.tau)
self.epsilon = max(self.epsilon * 0.99995, 0.22)
# store the (pre_s, action, reward, next_state, if_end) tuples in the replay memory
def perceive(self, pre_s, action, reward, next_state, if_end):
self.replay_mem.append([pre_s, action, reward, next_state, if_end])
if len(self.replay_mem) > self.mem_size:
self.replay_mem.popleft()
# give a state and action, return the action value
def get_value(self, s, a):
s = torch.tensor(s,dtype=torch.float)
with torch.no_grad():
val = self.policy_net(s.unsqueeze(0)).gather(1, torch.tensor(a,dtype = torch.long).unsqueeze(1)).view(1,1)
return val.item()
def save_model(self, save_path = './model/dqn_params'):
torch.save(self.policy_net.state_dict(), save_path)
# use the policy net to choose the action with the highest Q value
def action(self, s, epsilon_greedy = True):
p = random.random()
if epsilon_greedy and p <= self.epsilon:
return random.randint(0, self.action_dim - 1)
else:
s = torch.tensor(s, dtype=torch.float).unsqueeze(0)
with torch.no_grad():
# torch.max gives max value, torch.max[1] gives argmax index
action = self.policy_net(s).max(dim=1)[1].view(1,1) # use view for later item
return action.item() # use item() to get the vanilla number instead of a tensor
# choose an action according to the epsilon-greedy method
def e_action(self, s):
p = random.random()
if p <= self.epsilon:
return random.randint(0, self.action_dim - 1)
else:
return self.action(s)