forked from CihanTopal/ED_Lib
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEDLines.cpp
1262 lines (1009 loc) · 32.3 KB
/
EDLines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "EDLines.h"
#include "EDColor.h"
#include "NFA.h"
using namespace cv;
using namespace std;
EDLines::EDLines(Mat srcImage , double _line_error, int _min_line_len, double _max_distance_between_two_lines , double _max_error)
:ED(srcImage, SOBEL_OPERATOR, 36, 8)
{
min_line_len = _min_line_len;
line_error = _line_error;
max_distance_between_two_lines = _max_distance_between_two_lines;
max_error = _max_error;
if(min_line_len == -1) // If no initial value given, compute it
min_line_len = ComputeMinLineLength();
if (min_line_len < 9) // avoids small line segments in the result. Might be deleted!
min_line_len = 9;
// Temporary buffers used during line fitting
size_t buffer_size = (width + height) * 8;
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
auto segment_size = segmentPoints[segmentNumber].size();
buffer_size = std::max(buffer_size, segment_size);
}
double* x = new double[buffer_size];
double* y = new double[buffer_size];
linesNo = 0;
// Use the whole segment
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
int k = 0;
std::vector<Point> segment = segmentPoints[segmentNumber];
for (int k = 0; k < segment.size(); k++) {
x[k] = segment[k].x;
y[k] = segment[k].y;
}
SplitSegment2Lines(x, y, (int)segment.size(), segmentNumber);
}
/*----------- JOIN COLLINEAR LINES ----------------*/
JoinCollinearLines();
/*----------- VALIDATE LINES ----------------*/
#define PRECISON_ANGLE 22.5
prec = (PRECISON_ANGLE / 180)*M_PI;
double prob = 0.125;
#undef PRECISON_ANGLE
double logNT = 2.0*(log10((double)width) + log10((double)height));
int lutSize = (width + height) / 8;
nfa = new NFALUT(lutSize, prob, logNT); // create look up table
ValidateLineSegments();
// Delete redundant space from lines
// Pop them back
int size = (int)lines.size();
for (int i = 1; i <= size - linesNo; i++)
lines.pop_back();
for (int i = 0; i<linesNo; i++) {
Point2d start(lines[i].sx, lines[i].sy);
Point2d end(lines[i].ex, lines[i].ey);
linePoints.push_back(LS(start, end));
} //end-for
delete[] x;
delete[] y;
delete nfa;
}
EDLines::EDLines(ED obj, double _line_error, int _min_line_len, double _max_distance_between_two_lines, double _max_error)
:ED(obj)
{
min_line_len = _min_line_len;
line_error = _line_error;
max_distance_between_two_lines = _max_distance_between_two_lines;
max_error = _max_error;
if (min_line_len == -1) // If no initial value given, compute it
min_line_len = ComputeMinLineLength();
if (min_line_len < 9) // avoids small line segments in the result. Might be deleted!
min_line_len = 9;
// Temporary buffers used during line fitting
size_t buffer_size = (width + height) * 8;
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
auto segment_size = segmentPoints[segmentNumber].size();
buffer_size = std::max(buffer_size, segment_size);
}
double* x = new double[buffer_size];
double* y = new double[buffer_size];
linesNo = 0;
// Use the whole segment
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
int k = 0;
std::vector<Point> segment = segmentPoints[segmentNumber];
for (int k = 0; k < segment.size(); k++) {
x[k] = segment[k].x;
y[k] = segment[k].y;
}
SplitSegment2Lines(x, y, (int)segment.size(), segmentNumber);
}
/*----------- JOIN COLLINEAR LINES ----------------*/
JoinCollinearLines();
/*----------- VALIDATE LINES ----------------*/
#define PRECISON_ANGLE 22.5
prec = (PRECISON_ANGLE / 180)*M_PI;
double prob = 0.125;
#undef PRECISON_ANGLE
double logNT = 2.0*(log10((double)width) + log10((double)height));
int lutSize = (width + height) / 8;
nfa = new NFALUT(lutSize, prob, logNT); // create look up table
ValidateLineSegments();
// Delete redundant space from lines
// Pop them back
int size = (int)lines.size();
for (int i = 1; i <= size - linesNo; i++)
lines.pop_back();
for (int i = 0; i<linesNo; i++) {
Point2d start(lines[i].sx, lines[i].sy);
Point2d end(lines[i].ex, lines[i].ey);
linePoints.push_back(LS(start, end));
} //end-for
delete[] x;
delete[] y;
delete nfa;
}
EDLines::EDLines(EDColor obj, double _line_error, int _min_line_len, double _max_distance_between_two_lines, double _max_error)
:ED(obj)
{
min_line_len = _min_line_len;
line_error = _line_error;
max_distance_between_two_lines = _max_distance_between_two_lines;
max_error = _max_error;
if (min_line_len == -1) // If no initial value given, compute it
min_line_len = ComputeMinLineLength();
if (min_line_len < 9) // avoids small line segments in the result. Might be deleted!
min_line_len = 9;
// Temporary buffers used during line fitting
size_t buffer_size = (width + height) * 8;
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
auto segment_size = segmentPoints[segmentNumber].size();
buffer_size = std::max(buffer_size, segment_size);
}
double* x = new double[buffer_size];
double* y = new double[buffer_size];
linesNo = 0;
// Use the whole segment
for (int segmentNumber = 0; segmentNumber < segmentPoints.size(); segmentNumber++) {
int k = 0;
std::vector<Point> segment = segmentPoints[segmentNumber];
for (int k = 0; k < segment.size(); k++) {
x[k] = segment[k].x;
y[k] = segment[k].y;
}
SplitSegment2Lines(x, y, (int)segment.size(), segmentNumber);
}
/*----------- JOIN COLLINEAR LINES ----------------*/
JoinCollinearLines();
/*----------- VALIDATE LINES ----------------*/
#define PRECISON_ANGLE 22.5
prec = (PRECISON_ANGLE / 180)*M_PI;
double prob = 0.125;
#undef PRECISON_ANGLE
double logNT = 2.0*(log10((double)width) + log10((double)height));
int lutSize = (width + height) / 8;
nfa = new NFALUT(lutSize, prob, logNT); // create look up table
// Since edge segments are validated in ed color,
// Validation is not performed again in line segment detection
// TODO :: further validation might be applied.
// ValidateLineSegments();
// Delete redundant space from lines
// Pop them back
int size = (int)lines.size();
for (int i = 1; i <= size - linesNo; i++)
lines.pop_back();
for (int i = 0; i<linesNo; i++) {
Point2d start(lines[i].sx, lines[i].sy);
Point2d end(lines[i].ex, lines[i].ey);
linePoints.push_back(LS(start, end));
} //end-for
delete[] x;
delete[] y;
delete nfa;
}
EDLines::EDLines()
{
//
}
vector<LS> EDLines::getLines()
{
return linePoints;
}
int EDLines::getLinesNo()
{
return linesNo;
}
Mat EDLines::getLineImage()
{
Mat lineImage = Mat(height, width, CV_8UC1, Scalar(255));
for (int i = 0; i < linesNo; i++) {
line(lineImage, linePoints[i].start, linePoints[i].end, Scalar(0), 1, LINE_AA, 0);
}
return lineImage;
}
Mat EDLines::drawOnImage()
{
Mat colorImage = Mat(height, width, CV_8UC1, srcImg);
cvtColor(colorImage, colorImage, COLOR_GRAY2BGR);
for (int i = 0; i < linesNo; i++) {
line(colorImage, linePoints[i].start, linePoints[i].end, Scalar(0, 255, 0), 1, LINE_AA, 0); // draw lines as green on image
}
return colorImage;
}
//-----------------------------------------------------------------------------------------
// Computes the minimum line length using the NFA formula given width & height values
int EDLines::ComputeMinLineLength() {
// The reason we are dividing the theoretical minimum line length by 2 is because
// we now test short line segments by a line support region rectangle having width=2.
// This means that within a line support region rectangle for a line segment of length "l"
// there are "2*l" many pixels. Thus, a line segment of length "l" has a chance of getting
// validated by NFA.
double logNT = 2.0*(log10((double)width) + log10((double)height));
return (int) round((-logNT / log10(0.125))*0.5);
} //end-ComputeMinLineLength
//-----------------------------------------------------------------
// Given a full segment of pixels, splits the chain to lines
// This code is used when we use the whole segment of pixels
//
void EDLines::SplitSegment2Lines(double * x, double * y, int noPixels, int segmentNo)
{
// First pixel of the line segment within the segment of points
int firstPixelIndex = 0;
while (noPixels >= min_line_len) {
// Start by fitting a line to MIN_LINE_LEN pixels
bool valid = false;
double lastA, lastB, error;
int lastInvert;
while (noPixels >= min_line_len) {
LineFit(x, y, min_line_len, lastA, lastB, error, lastInvert);
if (error <= 0.5) { valid = true; break; }
#if 1
noPixels -= 1; // Go slowly
x += 1; y += 1;
firstPixelIndex += 1;
#else
noPixels -= 2; // Go faster (for speed)
x += 2; y += 2;
firstPixelIndex += 2;
#endif
} //end-while
if (valid == false) return;
// Now try to extend this line
int index = min_line_len;
int len = min_line_len;
while (index < noPixels) {
int startIndex = index;
int lastGoodIndex = index - 1;
int goodPixelCount = 0;
int badPixelCount = 0;
while (index < noPixels) {
double d = ComputeMinDistance(x[index], y[index], lastA, lastB, lastInvert);
if (d <= line_error) {
lastGoodIndex = index;
goodPixelCount++;
badPixelCount = 0;
}
else {
badPixelCount++;
if (badPixelCount >= 5) break;
} //end-if
index++;
} //end-while
if (goodPixelCount >= 2) {
len += lastGoodIndex - startIndex + 1;
LineFit(x, y, len, lastA, lastB, lastInvert); // faster LineFit
index = lastGoodIndex + 1;
} // end-if
if (goodPixelCount < 2 || index >= noPixels) {
// End of a line segment. Compute the end points
double sx, sy, ex, ey;
int index = 0;
while (ComputeMinDistance(x[index], y[index], lastA, lastB, lastInvert) > line_error) index++;
ComputeClosestPoint(x[index], y[index], lastA, lastB, lastInvert, sx, sy);
int noSkippedPixels = index;
index = lastGoodIndex;
while (ComputeMinDistance(x[index], y[index], lastA, lastB, lastInvert) > line_error) index--;
ComputeClosestPoint(x[index], y[index], lastA, lastB, lastInvert, ex, ey);
if ((sx == ex) & (sy == ey))
break;
// Add the line segment to lines
lines.push_back(LineSegment(lastA, lastB, lastInvert, sx, sy, ex, ey, segmentNo, firstPixelIndex + noSkippedPixels, index - noSkippedPixels + 1));
linesNo++;
len = index + 1;
break;
} //end-else
} //end-while
noPixels -= len;
x += len;
y += len;
firstPixelIndex += len;
} //end-while
}
//------------------------------------------------------------------
// Goes over the original line segments and combines collinear lines that belong to the same segment
//
void EDLines::JoinCollinearLines()
{
int lastLineIndex = -1; //Index of the last line in the joined lines
int i = 0;
while (i < linesNo) {
int segmentNo = lines[i].segmentNo;
lastLineIndex++;
if (lastLineIndex != i)
lines[lastLineIndex] = lines[i];
int firstLineIndex = lastLineIndex; // Index of the first line in this segment
int count = 1;
for (int j = i + 1; j< linesNo; j++) {
if (lines[j].segmentNo != segmentNo) break;
// Try to combine this line with the previous line in this segment
if (TryToJoinTwoLineSegments(&lines[lastLineIndex], &lines[j],
lastLineIndex) == false) {
lastLineIndex++;
if (lastLineIndex != j)
lines[lastLineIndex] = lines[j];
} //end-if
count++;
} //end-for
// Try to join the first & last line of this segment
if (firstLineIndex != lastLineIndex) {
if (TryToJoinTwoLineSegments(&lines[firstLineIndex], &lines[lastLineIndex],
firstLineIndex)) {
lastLineIndex--;
} //end-if
} //end-if
i += count;
} //end-while
linesNo = lastLineIndex + 1;
}
void EDLines::ValidateLineSegments()
{
int *x = new int[(width + height) * 4];
int *y = new int[(width + height) * 4];
int noValidLines = 0;
int eraseOffset = 0;
for (int i = 0; i< linesNo; i++) {
LineSegment *ls = &lines[i];
// Compute Line's angle
double lineAngle;
if (ls->invert == 0) {
// y = a + bx
lineAngle = atan(ls->b);
}
else {
// x = a + by
lineAngle = atan(1.0 / ls->b);
} //end-else
if (lineAngle < 0) lineAngle += M_PI;
Point *pixels = &(segmentPoints[ls->segmentNo][0]);
int noPixels = ls->len;
bool valid = false;
// Accept very long lines without testing. They are almost never invalidated.
if (ls->len >= 80) {
valid = true;
// Validate short line segments by a line support region rectangle having width=2
}
else if (ls->len <= 25) {
valid = ValidateLineSegmentRect( x, y, ls);
}
else {
// Longer line segments are first validated by a line support region rectangle having width=1 (for speed)
// If the line segment is still invalid, then a line support region rectangle having width=2 is tried
// If the line segment fails both tests, it is discarded
int aligned = 0;
int count = 0;
for (int j = 0; j<noPixels; j++) {
int r = pixels[j].x;
int c = pixels[j].y;
if (r <= 0 || r >= height - 1 || c <= 0 || c >= width - 1) continue;
count++;
// compute gx & gy using the simple [-1 -1 -1]
// [ 1 1 1] filter in both directions
// Faster method below
// A B C
// D x E
// F G H
// gx = (C-A) + (E-D) + (H-F)
// gy = (F-A) + (G-B) + (H-C)
//
// To make this faster:
// com1 = (H-A)
// com2 = (C-F)
// Then: gx = com1 + com2 + (E-D) = (H-A) + (C-F) + (E-D) = (C-A) + (E-D) + (H-F)
// gy = com2 - com1 + (G-B) = (H-A) - (C-F) + (G-B) = (F-A) + (G-B) + (H-C)
//
int com1 = srcImg[(r + 1)*width + c + 1] - srcImg[(r - 1)*width + c - 1];
int com2 = srcImg[(r - 1)*width + c + 1] - srcImg[(r + 1)*width + c - 1];
int gx = com1 + com2 + srcImg[r*width + c + 1] - srcImg[r*width + c - 1];
int gy = com1 - com2 + srcImg[(r + 1)*width + c] - srcImg[(r - 1)*width + c];
double pixelAngle = nfa->myAtan2((double)gx, (double)-gy);
double diff = fabs(lineAngle - pixelAngle);
if (diff <= prec || diff >= M_PI - prec) aligned++;
} //end-for
// Check validation by NFA computation (fast due to LUT)
valid = nfa->checkValidationByNFA(count, aligned);
if (valid == false) valid = ValidateLineSegmentRect(x, y, ls);
} //end-else
if (valid) {
if (i != noValidLines) lines[noValidLines] = lines[i];
noValidLines++;
}
else {
invalidLines.push_back(lines[i]);
} //end-else
} //end-for
linesNo = noValidLines;
delete x;
delete y;
}
bool EDLines::ValidateLineSegmentRect(int * x, int * y, LineSegment * ls)
{
// Compute Line's angle
double lineAngle;
if (ls->invert == 0) {
// y = a + bx
lineAngle = atan(ls->b);
}
else {
// x = a + by
lineAngle = atan(1.0 / ls->b);
} //end-else
if (lineAngle < 0) lineAngle += M_PI;
int noPoints = 0;
// Enumerate all pixels that fall within the bounding rectangle
EnumerateRectPoints(ls->sx, ls->sy, ls->ex, ls->ey, x, y, &noPoints);
int count = 0;
int aligned = 0;
for (int i = 0; i<noPoints; i++) {
int r = y[i];
int c = x[i];
if (r <= 0 || r >= height - 1 || c <= 0 || c >= width - 1) continue;
count++;
// compute gx & gy using the simple [-1 -1 -1]
// [ 1 1 1] filter in both directions
// Faster method below
// A B C
// D x E
// F G H
// gx = (C-A) + (E-D) + (H-F)
// gy = (F-A) + (G-B) + (H-C)
//
// To make this faster:
// com1 = (H-A)
// com2 = (C-F)
// Then: gx = com1 + com2 + (E-D) = (H-A) + (C-F) + (E-D) = (C-A) + (E-D) + (H-F)
// gy = com2 - com1 + (G-B) = (H-A) - (C-F) + (G-B) = (F-A) + (G-B) + (H-C)
//
int com1 = srcImg[(r + 1)*width + c + 1] - srcImg[(r - 1)*width + c - 1];
int com2 = srcImg[(r - 1)*width + c + 1] - srcImg[(r + 1)*width + c - 1];
int gx = com1 + com2 + srcImg[r*width + c + 1] - srcImg[r*width + c - 1];
int gy = com1 - com2 + srcImg[(r + 1)*width + c] - srcImg[(r - 1)*width + c];
double pixelAngle = nfa->myAtan2((double)gx, (double)-gy);
double diff = fabs(lineAngle - pixelAngle);
if (diff <= prec || diff >= M_PI - prec) aligned++;
} //end-for
return nfa->checkValidationByNFA(count, aligned);
}
double EDLines::ComputeMinDistance(double x1, double y1, double a, double b, int invert)
{
double x2, y2;
if (invert == 0) {
if (b == 0) {
x2 = x1;
y2 = a;
}
else {
// Let the line passing through (x1, y1) that is perpendicular to a+bx be c+dx
double d = -1.0 / (b);
double c = y1 - d*x1;
x2 = (a - c) / (d - b);
y2 = a + b*x2;
} //end-else
}
else {
/// invert = 1
if (b == 0) {
x2 = a;
y2 = y1;
}
else {
// Let the line passing through (x1, y1) that is perpendicular to a+by be c+dy
double d = -1.0 / (b);
double c = x1 - d*y1;
y2 = (a - c) / (d - b);
x2 = a + b*y2;
} //end-else
} //end-else
return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
}
//---------------------------------------------------------------------------------
// Given a point (x1, y1) and a line equation y=a+bx (invert=0) OR x=a+by (invert=1)
// Computes the (x2, y2) on the line that is closest to (x1, y1)
//
void EDLines::ComputeClosestPoint(double x1, double y1, double a, double b, int invert, double &xOut, double &yOut)
{
double x2, y2;
if (invert == 0) {
if (b == 0) {
x2 = x1;
y2 = a;
}
else {
// Let the line passing through (x1, y1) that is perpendicular to a+bx be c+dx
double d = -1.0 / (b);
double c = y1 - d*x1;
x2 = (a - c) / (d - b);
y2 = a + b*x2;
} //end-else
}
else {
/// invert = 1
if (b == 0) {
x2 = a;
y2 = y1;
}
else {
// Let the line passing through (x1, y1) that is perpendicular to a+by be c+dy
double d = -1.0 / (b);
double c = x1 - d*y1;
y2 = (a - c) / (d - b);
x2 = a + b*y2;
} //end-else
} //end-else
xOut = x2;
yOut = y2;
}
//-----------------------------------------------------------------------------------
// Fits a line of the form y=a+bx (invert == 0) OR x=a+by (invert == 1)
// Assumes that the direction of the line is known by a previous computation
//
void EDLines::LineFit(double * x, double * y, int count, double &a, double &b, int invert)
{
if (count<2) return;
double S = count, Sx = 0.0, Sy = 0.0, Sxx = 0.0, Sxy = 0.0;
for (int i = 0; i<count; i++) {
Sx += x[i];
Sy += y[i];
} //end-for
if (invert) {
// Vertical line. Swap x & y, Sx & Sy
double *t = x;
x = y;
y = t;
double d = Sx;
Sx = Sy;
Sy = d;
} //end-if
// Now compute Sxx & Sxy
for (int i = 0; i<count; i++) {
Sxx += x[i] * x[i];
Sxy += x[i] * y[i];
} //end-for
double D = S*Sxx - Sx*Sx;
a = (Sxx*Sy - Sx*Sxy) / D;
b = (S *Sxy - Sx* Sy) / D;
}
//-----------------------------------------------------------------------------------
// Fits a line of the form y=a+bx (invert == 0) OR x=a+by (invert == 1)
//
void EDLines::LineFit(double * x, double * y, int count, double &a, double &b, double &e, int &invert)
{
if (count<2) return;
double S = count, Sx = 0.0, Sy = 0.0, Sxx = 0.0, Sxy = 0.0;
for (int i = 0; i<count; i++) {
Sx += x[i];
Sy += y[i];
} //end-for
double mx = Sx / count;
double my = Sy / count;
double dx = 0.0;
double dy = 0.0;
for (int i = 0; i < count; i++) {
dx += (x[i] - mx)*(x[i] - mx);
dy += (y[i] - my)*(y[i] - my);
} //end-for
if (dx < dy) {
// Vertical line. Swap x & y, Sx & Sy
invert = 1;
double *t = x;
x = y;
y = t;
double d = Sx;
Sx = Sy;
Sy = d;
}
else {
invert = 0;
} //end-else
// Now compute Sxx & Sxy
for (int i = 0; i<count; i++) {
Sxx += x[i] * x[i];
Sxy += x[i] * y[i];
} //end-for
double D = S*Sxx - Sx*Sx;
a = (Sxx*Sy - Sx*Sxy) / D;
b = (S *Sxy - Sx* Sy) / D;
if (b == 0.0) {
// Vertical or horizontal line
double error = 0.0;
for (int i = 0; i<count; i++) {
error += fabs((a) - y[i]);
} //end-for
e = error / count;
}
else {
double error = 0.0;
for (int i = 0; i<count; i++) {
// Let the line passing through (x[i], y[i]) that is perpendicular to a+bx be c+dx
double d = -1.0 / (b);
double c = y[i] - d*x[i];
double x2 = ((a) - c) / (d - (b));
double y2 = (a) + (b)*x2;
double dist = (x[i] - x2)*(x[i] - x2) + (y[i] - y2)*(y[i] - y2);
error += dist;
} //end-for
e = sqrt(error / count);
} //end-else
}
//-----------------------------------------------------------------
// Checks if the given line segments are collinear & joins them if they are
// In case of a join, ls1 is updated. ls2 is NOT changed
// Returns true if join is successful, false otherwise
//
bool EDLines::TryToJoinTwoLineSegments(LineSegment * ls1, LineSegment * ls2, int changeIndex)
{
int which;
double dist = ComputeMinDistanceBetweenTwoLines(ls1, ls2, &which);
if (dist > max_distance_between_two_lines) return false;
// Compute line lengths. Use the longer one as the ground truth
double dx = ls1->sx - ls1->ex;
double dy = ls1->sy - ls1->ey;
double prevLen = sqrt(dx*dx + dy*dy);
dx = ls2->sx - ls2->ex;
dy = ls2->sy - ls2->ey;
double nextLen = sqrt(dx*dx + dy*dy);
// Use the longer line as the ground truth
LineSegment *shorter = ls1;
LineSegment *longer = ls2;
if (prevLen > nextLen) { shorter = ls2; longer = ls1; }
#if 0
// Use 5 points to check for collinearity
#define POINT_COUNT 5
double decr = 1.0 / (POINT_COUNT - 1);
double alpha = 1.0;
dist = 0.0;
while (alpha >= 0.0) {
double px = alpha*shorter->sx + (1.0 - alpha)*shorter->ex;
double py = alpha*shorter->sy + (1.0 - alpha)*shorter->ey;
dist += ComputeMinDistance(px, py, longer->a, longer->b, longer->invert);
alpha -= decr;
} //end-while
dist /= POINT_COUNT;
#undef POINT_COUNT
#else
// Just use 3 points to check for collinearity
dist = ComputeMinDistance(shorter->sx, shorter->sy, longer->a, longer->b, longer->invert);
dist += ComputeMinDistance((shorter->sx + shorter->ex) / 2.0, (shorter->sy + shorter->ey) / 2.0, longer->a, longer->b, longer->invert);
dist += ComputeMinDistance(shorter->ex, shorter->ey, longer->a, longer->b, longer->invert);
dist /= 3.0;
#endif
if (dist > max_error) return false;
#if 0
// Update the end points of ls1
if (which == 0) { // SS
ls1->sx = ls2->ex;
ls1->sy = ls2->ey;
}
else if (which == 1) { // SE
ls1->sx = ls2->sx;
ls1->sy = ls2->sy;
}
else if (which == 2) { // ES
ls1->ex = ls2->ex;
ls1->ey = ls2->ey;
}
else { // EE
ls1->ex = ls2->sx;
ls1->ey = ls2->sy;
} //end-else
#else
/// 4 cases: 1:(s1, s2), 2:(s1, e2), 3:(e1, s2), 4:(e1, e2)
/// case 1: (s1, s2)
dx = fabs(ls1->sx - ls2->sx);
dy = fabs(ls1->sy - ls2->sy);
double d = dx + dy;
double max = d;
which = 1;
/// case 2: (s1, e2)
dx = fabs(ls1->sx - ls2->ex);
dy = fabs(ls1->sy - ls2->ey);
d = dx + dy;
if (d > max) {
max = d;
which = 2;
} //end-if
/// case 3: (e1, s2)
dx = fabs(ls1->ex - ls2->sx);
dy = fabs(ls1->ey - ls2->sy);
d = dx + dy;
if (d > max) {
max = d;
which = 3;
} //end-if
/// case 4: (e1, e2)
dx = fabs(ls1->ex - ls2->ex);
dy = fabs(ls1->ey - ls2->ey);
d = dx + dy;
if (d > max) {
max = d;
which = 4;
} //end-if
if (which == 1) {
// (s1, s2)
ls1->ex = ls2->sx;
ls1->ey = ls2->sy;
}
else if (which == 2) {
// (s1, e2)
ls1->ex = ls2->ex;
ls1->ey = ls2->ey;
}
else if (which == 3) {
// (e1, s2)
ls1->sx = ls2->sx;
ls1->sy = ls2->sy;
}
else {
// (e1, e2)
ls1->sx = ls1->ex;
ls1->sy = ls1->ey;
ls1->ex = ls2->ex;
ls1->ey = ls2->ey;
} //end-else
#endif
// Update the first line's parameters
if (ls1->firstPixelIndex + ls1->len + 5 >= ls2->firstPixelIndex) ls1->len += ls2->len;
else if (ls2->len > ls1->len) {
ls1->firstPixelIndex = ls2->firstPixelIndex;
ls1->len = ls2->len;
} //end-if
UpdateLineParameters(ls1);
lines[changeIndex] = *ls1;
return true;
}
//-------------------------------------------------------------------------------
// Computes the minimum distance between the end points of two lines
//
double EDLines::ComputeMinDistanceBetweenTwoLines(LineSegment * ls1, LineSegment * ls2, int * pwhich)
{
double dx = ls1->sx - ls2->sx;
double dy = ls1->sy - ls2->sy;
double d = sqrt(dx*dx + dy*dy);
double min = d;
int which = SS;
dx = ls1->sx - ls2->ex;
dy = ls1->sy - ls2->ey;
d = sqrt(dx*dx + dy*dy);
if (d < min) { min = d; which = SE; }
dx = ls1->ex - ls2->sx;
dy = ls1->ey - ls2->sy;
d = sqrt(dx*dx + dy*dy);
if (d < min) { min = d; which = ES; }
dx = ls1->ex - ls2->ex;
dy = ls1->ey - ls2->ey;
d = sqrt(dx*dx + dy*dy);
if (d < min) { min = d; which = EE; }
if (pwhich) *pwhich = which;
return min;
}
//-----------------------------------------------------------------------------------
// Uses the two end points (sx, sy)----(ex, ey) of the line segment
// and computes the line that passes through these points (a, b, invert)
//
void EDLines::UpdateLineParameters(LineSegment * ls)
{
double dx = ls->ex - ls->sx;
double dy = ls->ey - ls->sy;
if (fabs(dx) >= fabs(dy)) {
/// Line will be of the form y = a + bx
ls->invert = 0;
if (fabs(dy) < 1e-3) { ls->b = 0; ls->a = (ls->sy + ls->ey) / 2; }
else {
ls->b = dy / dx;
ls->a = ls->sy - (ls->b)*ls->sx;
} //end-else
}
else {
/// Line will be of the form x = a + by
ls->invert = 1;
if (fabs(dx) < 1e-3) { ls->b = 0; ls->a = (ls->sx + ls->ex) / 2; }
else {
ls->b = dx / dy;
ls->a = ls->sx - (ls->b)*ls->sy;
} //end-else
} //end-else