-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
158 lines (123 loc) · 4.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import paddle
from paddle import nn
from model import MenN2N
from config import config
from eval import eval
from data import load_vocab, read_data
from importlib import import_module
import os, math
import numpy as np
import random
def train_single_step(model: MenN2N, lr, data, config):
"""
训练一个epoch
:param model: 训练的模型
:param lr: 本epoch的learning rate
:param data: 训练数据
:param config: 配置信息
:return: 平均loss
"""
model.train()
N = int(math.ceil(len(data) / config.batch_size)) # 总共训练N个Batch
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=config.max_grad_norm)
optimizer = paddle.optimizer.SGD(learning_rate=lr,
parameters=model.parameters(),
grad_clip=clip)
lossfn = nn.CrossEntropyLoss(reduction='sum')
total_loss = 0
if config.show:
ProgressBar = getattr(import_module('utils'), 'ProgressBar')
bar = ProgressBar('Train', max=N)
for batch in range(N):
if config.show:
bar.next()
optimizer.clear_grad()
context = np.ndarray([config.batch_size, config.mem_size],
dtype=np.int64)
target = np.ndarray([config.batch_size], dtype=np.int64)
for i in range(config.batch_size):
# 在原论文对应的实现中,这里采用的就是这种随机取样的方法
# 这里的随机也许会导致模型不稳定
# 我尝试过采用非随机的顺序取样,但得到的模型效果比随机取样的要差
m = random.randrange(config.mem_size, len(data))
target[i] = data[m]
context[i, :] = data[m - config.mem_size: m]
batch_data = paddle.to_tensor(context)
batch_label = paddle.to_tensor(target)
preict = model(batch_data)
loss = lossfn(preict, batch_label)
loss.backward()
optimizer.step()
total_loss += loss
if config.show:
bar.finish()
return total_loss / N / config.batch_size
def train(model: MenN2N, train_data, valid_data, config):
"""
完成训练
"""
lr = config.init_lr
train_losses = []
train_perplexities = []
valid_losses = []
valid_perplexities = []
for epoch in range(1, config.nepoch + 1):
train_loss = train_single_step(model, lr, train_data, config)
valid_loss = eval(model, valid_data, config, "Validation")
info = {
'epoch': epoch,
'learning_rate': lr
}
# 当valid上的loss不再下降时,就像learning rate除以1.5
if len(valid_losses) > 0 and valid_loss > valid_losses[-1] * 0.9999:
lr /= 1.5
train_losses.append(train_loss)
train_perplexities.append(math.exp(train_loss))
valid_losses.append(valid_loss)
valid_perplexities.append(math.exp(valid_loss))
info["train_perplexity"] = train_perplexities[-1]
info["validate_perplexity"] = valid_perplexities[-1]
print(info)
if epoch % 5 == 0:
save_dir = os.path.join(config.checkpoint_dir, "model_%d" % epoch)
paddle.save(model.state_dict(), save_dir)
lr_path = os.path.join(config.checkpoint_dir, "lr_%d" % epoch)
with open(lr_path, "w") as f:
f.write(f"{lr}")
# 为了完成目标精度
if info["validate_perplexity"] < 147.0:
save_dir = os.path.join(config.checkpoint_dir, "model_good")
paddle.save(model.state_dict(), save_dir)
break
if lr < 1e-5:
break
save_dir = os.path.join(config.checkpoint_dir, "model")
paddle.save(model.state_dict(), save_dir)
if __name__ == '__main__':
paddle.set_device("gpu")
vocab_path = os.path.join(config.data_dir,
"%s.vocab.txt" % config.data_name)
word2idx = load_vocab(vocab_path)
if not os.path.exists(config.checkpoint_dir):
os.makedirs(config.checkpoint_dir)
train_data = read_data(
os.path.join(config.data_dir, "%s.train.txt" % config.data_name),
word2idx)
valid_data = read_data(
os.path.join(config.data_dir, "%s.valid.txt" % config.data_name),
word2idx)
test_data = read_data(
os.path.join(config.data_dir, "%s.test.txt" % config.data_name),
word2idx)
idx2word = dict(zip(word2idx.values(), word2idx.keys()))
config.nwords = len(word2idx)
print("vacab size is %d" % config.nwords)
np.random.seed(config.srand)
random.seed(config.srand)
paddle.seed(config.srand)
model = MenN2N(config)
if config.recover_train:
model_path = os.path.join(config.checkpoint_dir, config.model_name)
state_dict = paddle.load(model_path)
model.set_dict(state_dict)
train(model, train_data, valid_data, config)