forked from Chaogan-Yan/REST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrest_GRF_Threshold.m
executable file
·196 lines (171 loc) · 10.3 KB
/
rest_GRF_Threshold.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
function [Data_Corrected, ClusterSize, Header]=rest_GRF_Threshold(StatsImgFile,VoxelPThreshold,IsTwoTailed,ClusterPThreshold,OutputName,MaskFile,Flag,Df1,Df2,VoxelSize,Header, dLh)
% function [Data_Corrected, ClusterSize, Header]=y_GRF_Threshold(StatsImgFile,VoxelPThreshold,IsTwoTailed,ClusterPThreshold,OutputName,MaskFile,Flag,Df1,Df2,VoxelSize,Header)
% Function to perform Gaussian Random Field theory multiple comparison correction like easythresh in FSL.
% References:
% Flitney, D.E., & Jenkinson, M. 2000. Cluster Analysis Revisited. Tech. rept. Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, Oxford University, Oxford, UK. TR00DF1.
% K. Friston, K. Worsley, R. Frackowiak, J. Mazziotta, and A. Evans. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1:214?220, 1994.
% Input:
% StatsImgFile - The statistical image file name. Could be either Z, T, F or R statistical image. T/F/R images will transformed into Z image (according to their degree of freedom Df1, Df2) to perform further smoothness estimation and cluster thresholding.
% VoxelPThreshold - P threshold for each voxel. Will be transformed into Z threshold in two-tailed way or one-tailed way. Note: FSL's Z>2.3 corresponds to one-tailed VoxelPThreshold = 0.0107. |Z|>2.3 corresponds to two-tailed VoxelPThreshold = 0.0214.
% IsTwoTailed - 0: in one-tailed way. 1: converting voxel P threshold to z threshold in two-tailed way. Correct positive values to Cluster P at ClusterPThreshold/2, and correct negative values to Cluster P at ClusterPThreshold/2. Together the Cluster P < ClusterPThreshold.
% ClusterPThreshold - The final cluster-level P threshold
% OutputName - The output file name. Will be suffixed by'Z_ClusterThresholded_'.
% - 'DO NOT OUTPUT IMAGE': means called by rest_sliceviewer, and do not need to write into a file.
% MaskFile - The mask file name. If empty (i.e., ''), then all voxels are included.
% Flag - 'Z', 'T', 'F' or 'R'. Indicate the type of the input statistical image
% - If not defined or defined as empty, then will read the statistical type and degree of freedom information from the image (if the statistical analysis was performed with REST or SPM).
% Df1 - The degree of freedom of the statistical image. For F statistical image, there is also Df2
% Df2 - The second degree of freedom of F statistical image
% VoxelSize - The Voxel's size of the image inputed. Defined when call by rest_sliceviewer.
% Header - The Header of the nifti image.
% dLh - Smoothness estimated as sqrt(det(Lambda)) with rest_Smoothest, will be used in inference.
% If this item is not provided, or is empty, then the smoothness will be estimated automatically from the statistical image (first convert to Z image).
% Output:
% The image file (Z statistical image) after correction.
% Data_Corrected - The Data matrix after correction
% ClusterSize - The cluster size for cluster-level p threshold and can be used in REST Slice Viewer. (Note: corner connection is used in FSL)
% Header - The output Header of the nifti image.
%___________________________________________________________________________
% Written by YAN Chao-Gan 120120.
% The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
% Child Mind Institute, 445 Park Avenue, New York, NY 10022, USA
% The Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, New York University Child Study Center, New York, NY 10016, USA
if ~exist('VoxelSize','var')
VoxelSize = ''; % The voxel size will be defined later
end
if strcmpi(OutputName,'DO NOT OUTPUT IMAGE') %Added by Sandy to make it compatible with Image matrix
OutPath=''; %OutPath will not be used because do not need to output image
else
[OutPath, OutName,OutExt]=fileparts(OutputName);
if isempty(OutPath)
OutPath='.';
end
end
%Added by YAN Chao-Gan 121222. Detect the Flag and DF from the data if Flag is not defined.
if (~exist('Flag','var')) || (exist('Flag','var') && isempty(Flag))
if ischar(StatsImgFile)
[Data VoxelSize Header]=rest_readfile(StatsImgFile);
end
if isfield(Header,'descrip')
headinfo=Header.descrip;
Df2=0;
if ~isempty(strfind(headinfo,'{T_['))% dong 100331 begin
Flag='T';
Tstart=strfind(headinfo,'{T_[')+length('{T_[');
Tend=strfind(headinfo,']}')-1;
Df1 = str2num(headinfo(Tstart:Tend));
elseif ~isempty(strfind(headinfo,'{F_['))
Flag='F';
Tstart=strfind(headinfo,'{F_[')+length('{F_[');
Tend=strfind(headinfo,']}')-1;
F_Df = str2num(headinfo(Tstart:Tend));
Df1=F_Df(1,1);
Df2=F_Df(1,2);
elseif ~isempty(strfind(headinfo,'{R_['))
Flag='R';
Tstart=strfind(headinfo,'{R_[')+length('{R_[');
Tend=strfind(headinfo,']}')-1;
Df1 = str2num(headinfo(Tstart:Tend));
elseif ~isempty(strfind(headinfo,'{Z_['))
Flag='Z';
Tstart=strfind(headinfo,'{Z_[')+length('{Z_[');
Tend=strfind(headinfo,']}')-1;
Df1 = str2num(headinfo(Tstart:Tend));
end
end
end
%Added by YAN Chao-Gan 130508. If dLh is not provided, or is empty, then the smoothness will be estimated automatically from the statistical image (first convert to Z image).
if (~exist('dLh','var')) || (exist('dLh','var') && isempty(dLh))
if strcmpi(Flag,'Z')
DOF=''; %Degree of freedom for residual files
[dLh,resels,FWHM, nVoxels]=rest_Smoothest(StatsImgFile,MaskFile,DOF,VoxelSize);
else
if ~exist('Df2','var')
Df2=0;
end
if strcmpi(OutputName,'DO NOT OUTPUT IMAGE')%Added by Sandy to make it compatible with Image matrix
[Z_StatsImg P Header]=rest_TFRtoZ(StatsImgFile,OutputName,Flag,Df1,Df2,Header);
DOF=''; %Degree of freedom for residual files
[dLh,resels,FWHM,nVoxels]=rest_Smoothest(Z_StatsImg,MaskFile,DOF,VoxelSize);
else
[Z P] = rest_TFRtoZ(StatsImgFile,[OutPath,filesep,'Z_BeforeThreshold_',OutName,OutExt],Flag,Df1,Df2);
[dLh,resels,FWHM, nVoxels]=rest_Smoothest([OutPath,filesep,'Z_BeforeThreshold_',OutName,OutExt], MaskFile);
end
end
end
if IsTwoTailed
zThrd=norminv(1 - VoxelPThreshold/2);
else
zThrd=norminv(1 - VoxelPThreshold);
end
fprintf('The voxel Z threshold for voxel p threshold %f is: %f.\n',VoxelPThreshold,zThrd);
% Note: If two-tailed way is used, then correct positive values to Cluster P at ClusterPThreshold/2, and correct negative values to Cluster P at ClusterPThreshold/2. Together the Cluster P < ClusterPThreshold.
fprintf('The Minimum cluster size for voxel p threshold %f and cluster p threshold %f is: ',VoxelPThreshold,ClusterPThreshold);
if IsTwoTailed
ClusterPThreshold = ClusterPThreshold/2;
end
% Calculate Expectations of m clusters Em and exponent Beta for inference.
D=3;
Em = nVoxels * (2*pi)^(-(D+1)/2) * dLh * (zThrd*zThrd-1)^((D-1)/2) * exp(-zThrd*zThrd/2);
EN = nVoxels * (1-normcdf(zThrd)); %In Friston et al., 1994, EN = S*Phi(-u). (Expectation of N voxels) % K. Friston, K. Worsley, R. Frackowiak, J. Mazziotta, and A. Evans. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1:214?220, 1994.
Beta = ((gamma(D/2+1)*Em)/(EN)) ^ (2/D); % K. Friston, K. Worsley, R. Frackowiak, J. Mazziotta, and A. Evans. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1:214?220, 1994.
% Get the minimum cluster size
pTemp=1;
ClusterSize=0;
while pTemp >= ClusterPThreshold
ClusterSize=ClusterSize+1;
pTemp = 1 - exp(-Em * exp(-Beta * ClusterSize^(2/D))); %K. Friston, K. Worsley, R. Frackowiak, J. Mazziotta, and A. Evans. Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1:214?220, 1994.
end
fprintf('%f voxels\n',ClusterSize);
ConnectivityCriterion = 26; % Corner connection is used in FSL.
if strcmpi(Flag,'Z')
if strcmpi(OutputName,'DO NOT OUTPUT IMAGE')%Added by Sandy to make it compatible with Image matrix
BrainVolume=StatsImgFile;
else
[BrainVolume, VoxelSize, Header]=rest_readfile(StatsImgFile);
end
else
if strcmpi(OutputName,'DO NOT OUTPUT IMAGE')%Added by Sandy to make it compatible with Image matrix
BrainVolume=Z_StatsImg; %Transformed into Z statistic in previous step.
else
[BrainVolume, VoxelSize, Header]=rest_readfile([OutPath,filesep,'Z_BeforeThreshold_',OutName,OutExt]);
end
end
%Apply the Mask to the Brain Volume
[nDim1 nDim2 nDim3 nDimTimePoints]=size(BrainVolume);
if ~isempty(MaskFile)
[MaskData,MaskVox,MaskHead]=rest_readfile(MaskFile);
else
MaskData=ones(nDim1,nDim2,nDim3);
end
BrainVolume = BrainVolume.*MaskData;
if ClusterSize > 0
if IsTwoTailed % If Two Tailed, then correct negative values to Cluster P at ClusterPThreshold/2 first.
BrainVolumeNegative = BrainVolume .* (BrainVolume <= -1*zThrd);
[theObjMask, theObjNum]=bwlabeln(BrainVolumeNegative,ConnectivityCriterion);
for x=1:theObjNum,
theCurrentCluster = theObjMask==x;
if length(find(theCurrentCluster)) < ClusterSize,
BrainVolumeNegative(logical(theCurrentCluster))=0;
end
end
else
BrainVolumeNegative = 0;
end
% Correct positive values to Cluster P
BrainVolume = BrainVolume .* (BrainVolume >= zThrd);
[theObjMask, theObjNum]=bwlabeln(BrainVolume,ConnectivityCriterion);
for x=1:theObjNum,
theCurrentCluster = theObjMask==x;
if length(find(theCurrentCluster)) < ClusterSize,
BrainVolume(logical(theCurrentCluster))=0;
end
end
BrainVolume = BrainVolume + BrainVolumeNegative;
end
Data_Corrected=BrainVolume;
[nDim1,nDim2,nDim3]=size(BrainVolume);
if ~strcmpi(OutputName,'DO NOT OUTPUT IMAGE')%Added by Sandy to make it compatible with Image matrix
rest_writefile(BrainVolume,[OutPath,filesep,'Z_ClusterThresholded_',OutName,OutExt],[nDim1,nDim2,nDim3],VoxelSize, Header,'double');
end