-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
189 lines (155 loc) · 5.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 2 21:12:00 2021
@author: Xi Yu, Shujian Yu
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader, TensorDataset
import os
import argparse
from torchvision import datasets, transforms
from pytorch_model_summary import summary
from scipy.spatial.distance import pdist, squareform
import numpy as np
import os
import argparse
from model import VGG
from utils import calculate_MI
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
parser = argparse.ArgumentParser(description='DIB')
parser.add_argument(
'--lr',
type=float,
default=0.1,
help='learning rate')
parser.add_argument(
"--epochs",
type=int,
default=300,
help="Number of training epochs. Default: 300")
parser.add_argument(
"--weight-decay",
"-wd",
type=float,
default=5e-4, #5e-4
help="L2 regularization factor. Default: 2e-4")
args = parser.parse_args()
#--------------------CIFAR-10----------------------------------#
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=6)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=6)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
#--------------------Model----------------------------------#
print('==> Building model..')
net = VGG("VGG16")
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[150, 250], gamma=0.1)
#--------------------Train and Test----------------------------------#
def train(epoch):
#print('\nEpoch: %d' % epoch)
print('\nEpoch [{}/{}]'.format(epoch+1, args.epochs))
net.train()
train_loss = 0
IXZ_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
Z,outputs = net(inputs)
loss = criterion(outputs, targets)
with torch.no_grad():
Z_numpy = Z.cpu().detach().numpy()
k = squareform(pdist(Z_numpy, 'euclidean')) # Calculate Euclidiean distance between all samples.
sigma_z = np.mean(np.mean(np.sort(k[:, :10], 1)))
inputs_numpy = inputs.cpu().detach().numpy()
inputs_numpy = inputs_numpy.reshape(inputs.shape[0],-1)
k_input = squareform(pdist(inputs_numpy, 'euclidean'))
sigma_input = np.mean(np.mean(np.sort(k_input[:, :10], 1)))
IXZ = calculate_MI(inputs,Z,s_x=sigma_input,s_y=sigma_z)
total_loss = loss + 0.01*IXZ
total_loss.backward()
optimizer.step()
train_loss += loss.item()
IXZ_loss += IXZ.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print ('Step [{}/{}], Loss: {:.4f},I_xz: {:.4f}, Acc: {}% [{}/{}])'
.format(batch_idx,
len(trainloader),
train_loss/(batch_idx+1),
IXZ_loss/(batch_idx+1),
100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
_,outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print ('Step [{}/{}], Loss: {:.4f}, Acc: {}% [{}/{}])'
.format(batch_idx,
len(testloader),
test_loss/(batch_idx+1),
100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt_IB.pth')
best_acc = acc
return acc
#--------------------Main----------------------------------#
best_acc = 0
all_IB_acc = []
for epoch in range(args.epochs):
train(epoch)
acc = test(epoch)
scheduler.step()
all_IB_acc.append(acc)