-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
192 lines (156 loc) · 6.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import os
import numpy as np
import random
from torch.utils import data
from torchvision import transforms as trans
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
from sklearn.metrics import roc_curve
from sklearn.metrics import auc as cal_auc
from PIL import Image
import sys
import logging
class FFDataset(data.Dataset):
def __init__(self, dataset_root, frame_num=300, size=299, augment=True):
self.data_root = dataset_root
self.frame_num = frame_num
self.train_list = self.collect_image(self.data_root)
if augment:
self.transform = trans.Compose([trans.RandomHorizontalFlip(p=0.5), trans.ToTensor()])
print("Augment True!")
else:
self.transform = trans.ToTensor()
self.max_val = 1.
self.min_val = -1.
self.size = size
def collect_image(self, root):
image_path_list = []
for split in os.listdir(root):
split_root = os.path.join(root, split)
img_list = os.listdir(split_root)
random.shuffle(img_list)
img_list = img_list if len(img_list) < self.frame_num else img_list[:self.frame_num]
for img in img_list:
img_path = os.path.join(split_root, img)
image_path_list.append(img_path)
return image_path_list
def read_image(self, path):
img = Image.open(path)
return img
def resize_image(self, image, size):
img = image.resize((size, size))
return img
def __getitem__(self, index):
image_path = self.train_list[index]
img = self.read_image(image_path)
img = self.resize_image(img,size=self.size)
img = self.transform(img)
img = img * (self.max_val - self.min_val) + self.min_val
return img
def __len__(self):
return len(self.train_list)
def get_dataset(name = 'train', size=299, root='/data/yike/FF++_std_c40_300frames/', frame_num=300, augment=True):
root = os.path.join(root, name)
fake_root = os.path.join(root,'fake')
fake_list = ['Deepfakes', 'Face2Face', 'FaceSwap', 'NeuralTextures']
total_len = len(fake_list)
dset_lst = []
for i in range(total_len):
fake = os.path.join(fake_root , fake_list[i])
dset = FFDataset(fake, frame_num, size, augment)
dset.size = size
dset_lst.append(dset)
return torch.utils.data.ConcatDataset(dset_lst), total_len
def evaluate(model, data_path, mode='valid'):
root= data_path
origin_root = root
root = os.path.join(data_path, mode)
real_root = os.path.join(root,'real')
dataset_real = FFDataset(dataset_root=real_root, size=299, frame_num=50, augment=False)
dataset_fake, _ = get_dataset(name=mode, root=origin_root, size=299, frame_num=50, augment=False)
dataset_img = torch.utils.data.ConcatDataset([dataset_real, dataset_fake])
bz = 64
# torch.cache.empty_cache()
with torch.no_grad():
y_true, y_pred = [], []
for i, d in enumerate(dataset_img.datasets):
dataloader = torch.utils.data.DataLoader(
dataset = d,
batch_size = bz,
shuffle = True,
num_workers = 8
)
for img in dataloader:
if i == 0:
label = torch.zeros(img.size(0))
else:
label = torch.ones(img.size(0))
img = img.detach().cuda()
output = model.forward(img)
y_pred.extend(output.sigmoid().flatten().tolist())
y_true.extend(label.flatten().tolist())
y_true, y_pred = np.array(y_true), np.array(y_pred)
fpr, tpr, thresholds = roc_curve(y_true,y_pred,pos_label=1)
AUC = cal_auc(fpr, tpr)
idx_real = np.where(y_true==0)[0]
idx_fake = np.where(y_true==1)[0]
r_acc = accuracy_score(y_true[idx_real], y_pred[idx_real] > 0.5)
f_acc = accuracy_score(y_true[idx_fake], y_pred[idx_fake] > 0.5)
return AUC, r_acc, f_acc
# python 3.7
"""Utility functions for logging."""
__all__ = ['setup_logger']
DEFAULT_WORK_DIR = 'results'
def setup_logger(work_dir=None, logfile_name='log.txt', logger_name='logger'):
"""Sets up logger from target work directory.
The function will sets up a logger with `DEBUG` log level. Two handlers will
be added to the logger automatically. One is the `sys.stdout` stream, with
`INFO` log level, which will print improtant messages on the screen. The other
is used to save all messages to file `$WORK_DIR/$LOGFILE_NAME`. Messages will
be added time stamp and log level before logged.
NOTE: If `logfile_name` is empty, the file stream will be skipped. Also,
`DEFAULT_WORK_DIR` will be used as default work directory.
Args:
work_dir: The work directory. All intermediate files will be saved here.
(default: None)
logfile_name: Name of the file to save log message. (default: `log.txt`)
logger_name: Unique name for the logger. (default: `logger`)
Returns:
A `logging.Logger` object.
Raises:
SystemExit: If the work directory has already existed, of the logger with
specified name `logger_name` has already existed.
"""
logger = logging.getLogger(logger_name)
if logger.hasHandlers(): # Already existed
raise SystemExit(f'Logger name `{logger_name}` has already been set up!\n'
f'Please use another name, or otherwise the messages '
f'may be mixed between these two loggers.')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")
# Print log message with `INFO` level or above onto the screen.
sh = logging.StreamHandler(stream=sys.stdout)
sh.setLevel(logging.DEBUG)
sh.setFormatter(formatter)
logger.addHandler(sh)
if not logfile_name:
return logger
work_dir = work_dir or DEFAULT_WORK_DIR
logfile_name = os.path.join(work_dir, logfile_name)
# if os.path.isfile(logfile_name):
# print(f'Log file `{logfile_name}` has already existed!')
# while True:
# decision = input(f'Would you like to overwrite it (Y/N): ')
# decision = decision.strip().lower()
# if decision == 'n':
# raise SystemExit(f'Please specify another one.')
# if decision == 'y':
# logger.warning(f'Overwriting log file `{logfile_name}`!')
# break
os.makedirs(work_dir, exist_ok=True)
# Save log message with all levels in log file.
fh = logging.FileHandler(logfile_name)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger