-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path18.js
51 lines (48 loc) · 1.61 KB
/
18.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// Maximum path sum I
// Problem 18
//
// By starting at the top of the triangle below and moving to adjacent numbers on the row below,
// the maximum total from top to bottom is 23.
// 3
// 7 4
// 2 4 6
// 8 5 9 3
// That is, 3 + 7 + 4 + 9 = 23.
//
// Find the maximum total from top to bottom of the triangle below.
//
// NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
var maxTotalInTriangleMatrix = function (matrix) {
for (var r = 0; r < matrix.length; r++) {
for (var c = 0; c < matrix[r].length; c++) {
matrix[r][c] += matrix[r - 1] ? Math.max(matrix[r - 1][c] || 0, matrix[r - 1][c - 1] || 0) : 0;
}
}
var max = matrix.pop().reduce(function (x, y) {
return Math.max(x, y);
});
console.log(max);
};
maxTotalInTriangleMatrix([
[3],
[7, 4],
[2, 4, 6],
[8, 5, 9, 3]
]);
maxTotalInTriangleMatrix([
[75],
[95, 64],
[17, 47, 82],
[18, 35, 87, 10],
[20, 4, 82, 47, 65],
[19, 1, 23, 75, 3, 34],
[88, 2, 77, 73, 7, 63, 67],
[99, 65, 4, 28, 6, 16, 70, 92],
[41, 41, 26, 56, 83, 40, 80, 70, 33],
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
[63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
[4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]
]);