-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_agent_dqn3.py
125 lines (105 loc) · 4.63 KB
/
train_agent_dqn3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import os
from src.agent.agent_dqn import Agent
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
from torch.utils.tensorboard import SummaryWriter
from src.env.grid_env import GridEnv
import pygame
from src.env.config import *
from src.utils.pygame_painter import Painter
params = {
'name': 'dqn',
# field
'w': FIELD.w,
'h': FIELD.h,
'start_direction': MOVEMENTS[np.random.randint(0, len(ACTION))],
'start_pos': np.random.randint(0, min(FIELD.h, FIELD.w), size=(2,)),
'field_data': FIELD.data,
# model params
'update_every': 10,
'eps_start': 0.15, # Default/starting value of eps
'eps_decay': 0.99999, # Epsilon decay rate
'eps_min': 0.15, # Minimum epsilon
'gamma': 0.9,
'buffer_size': 200000,
'batch_size': 128,
'action_size': len(ACTION),
'is_double': False,
'is_priority_buffer': True,
# grid params
'max_step': 200,
# train params
'is_train': True,
'visualise': False,
'is_normalize': False,
'num_episodes': 5000000,
'scale': 15,
# folder params
# output
'output_folder': "output_dqn3",
'log_folder': 'log',
'model_folder': 'model',
'memory_config_dir': "memory_config"
}
params['log_folder'] = os.path.join(params['output_folder'], params['log_folder'])
params['model_folder'] = os.path.join(params['output_folder'], params['model_folder'])
if not os.path.exists(params['log_folder']):
os.makedirs(params['log_folder'])
if not os.path.exists(params['model_folder']):
os.makedirs(params['model_folder'])
painter = Painter(params) if params['visualise'] else None
grid_env = GridEnv(params, painter)
# model_path = os.path.join(params['output_folder'], "model", "Agent_dqn_state_dict_1600.mdl")
model_path = os.path.join("output_dqn", "model", "Agent_dqn_state_dict_123600.mdl")
dqn_agent = Agent(params, painter, model_path="")
writer = SummaryWriter(log_dir=params['log_folder'])
all_mean_rewards = []
all_mean_losses = []
time_step = 0
for i_episode in range(params['num_episodes']):
observed_map, robot_pose = grid_env.reset()
done = False
rewards = []
losses = []
while not done:
action = dqn_agent.act(observed_map, robot_pose)
observed_map_next, robot_pose_next, reward, done = grid_env.step(action)
dqn_agent.step(state=[observed_map, robot_pose], action=action, reward=reward,
next_state=[observed_map_next, robot_pose_next], done=done)
# 转到下一个状态
observed_map = observed_map_next.copy()
robot_pose = robot_pose_next.copy()
loss = dqn_agent.learn(memory_config_dir=params['memory_config_dir'])
losses.append(loss)
time_step += 1
writer.add_scalar('train/loss_per_time_step', loss, time_step)
# print("action=", action, ";reward:", reward, ";done:", done)
if params['visualise']:
painter.update()
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
rewards.append(reward)
if done:
if (i_episode + 1) % 200 == 0:
# plt.cla()
model_save_path = os.path.join(params['model_folder'], "Agent_dqn_state_dict_%d.mdl" % (i_episode + 1))
dqn_agent.store_model(model_save_path)
all_mean_rewards.append(np.mean(rewards))
all_mean_losses.append(np.mean(losses))
print()
print(
"i episode:{}; mean reward:{}; num_found_free_cell:{}/{};num_found_targets:{}/{}; num_found_occupied:{}/{}"
.format(i_episode, np.mean(rewards), grid_env.count_found_free, grid_env.count_free,
grid_env.count_found_target, grid_env.count_target,
grid_env.count_found_occupied, grid_env.count_occupied))
writer.add_scalar('train/losses_smoothed', np.mean(all_mean_losses[max(0, i_episode - 200):]), i_episode)
writer.add_scalar('train/loss_per_episode', np.mean(losses), i_episode)
writer.add_scalar('train/rewards_smoothed', np.mean(all_mean_rewards[max(0, i_episode - 200):]), i_episode)
writer.add_scalar("train/reward_per_episode", np.mean(rewards), i_episode)
writer.add_scalar('train/num_found_free_cell', grid_env.count_found_free, i_episode)
writer.add_scalar('train/num_found_targets', grid_env.count_found_target, i_episode)
writer.add_scalar('train/num_found_total_cell', grid_env.count_found_free + grid_env.count_found_target,
i_episode)
print("rewards:",rewards)
print('Complete')