-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbsf_iir.py
executable file
·224 lines (181 loc) · 5.37 KB
/
bsf_iir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/python
import numpy as np
import scipy as sp
import scipy.signal as sg
import matplotlib.pyplot as plt
import pylab as pl
#first trying with given values
f_num=102
del_1=0.1
del_2=0.1
f_sample=70000
if f_num > 70:
m=f_num-70
else:
m=f_num
if (m*0.1-int(m*0.1)) > 0:
q_m=int(0.1*m)
else:
q_m=(0.1*m - 1)
r_m=m-10*q_m
B_l_m=2+0.6*q_m+1.5*r_m
B_h_m=B_l_m+3
# analog values for bandstop
omega_p1=(B_l_m-1)*1000.0
omega_s1=(B_l_m)*1000.0
omega_s2=(B_h_m)*1000.0
omega_p2=(B_h_m+1)*1000.0
#analog f_range array
f_analog_a=np.array([omega_p1,omega_s1,omega_s2,omega_p2],dtype='f')
#normalized digital frequencies
f_digital_a=(f_analog_a/f_sample)*2*np.pi
#just for checking ****wrong
#f_digital_a=(f_analog_a/f_sample)
#Bilinear Transformation
f_eqv_analog_a=np.tan(f_digital_a/2)
#intermediate values needed for frequency transformation
omega_z_s=f_eqv_analog_a[0]*f_eqv_analog_a[3]
f_B=f_eqv_analog_a[3]-f_eqv_analog_a[0]
#Frequency Transformation for bandpass
f_eqv_analog_lpf_a=(f_B*f_eqv_analog_a)/(omega_z_s-(f_eqv_analog_a**2))
#Values for Butterworth lpf design
D_1=(1/(1-del_1)**2)-1
D_2=(1/del_2**2)-1
#print "D1 and D2",D_1,D_2
epsilon=np.sqrt(D_1)
mod_f_eqv_analog_lpf_a=abs(f_eqv_analog_lpf_a)
stringent_omega_s=min(mod_f_eqv_analog_lpf_a[1],mod_f_eqv_analog_lpf_a[2])
N_1=np.log(np.sqrt(D_2)/np.sqrt(D_1))/np.log(stringent_omega_s/f_eqv_analog_lpf_a[0])
N=np.ceil(N_1)
#print "stringent",stringent_omega_s
#print "omega_z_s",omega_z_s
#print "B",f_B
omega_p=f_eqv_analog_lpf_a[0]
#print "omega_p",omega_p
#Finding the filter poles
omega_c=((omega_p/(D_1**(1/(2*N))))+(stringent_omega_s/(D_2**(1/(2*N)))))/2
poles_a=np.zeros([2*N-1],dtype='complex64')
iterable=((2*k+1)*np.pi/(2*N) for k in range(2*int(N)))
xp=np.fromiter(iterable,float)
poles_a=(1.j)*omega_c*np.exp(1.j*xp)
a=1+0.j
for c in poles_a:
if(c.real< 0):
a=np.poly1d([1,-c],r=0)*a
#print "Low pass tf\n",a
#Lowpass filter transfer function
#Find gain for Chebyshev
K_butter=omega_c**N
#print "GAIN:",K_butter
#print "omega_c:",omega_c
numer=K_butter
denom=1+0.j
for c in poles_a:
if(c.real<= 0):
numer=np.poly1d([1,0,omega_z_s],r=0)*numer
denom=np.poly1d([-c,f_B,-c*omega_z_s],r=0)*denom
#print "analog numerator\n",numer
#print "\nanalog denominator\n",denom
z,p,k=sg.tf2zpk(numer,denom)
#print "Check",z,p,k
plt.figure(5)
plt.grid(True)
plt.scatter(p.real,p.imag,s=50,marker='x')
plt.scatter(z.real,z.imag,s=50,marker='o')
plt.title('Pole Zero plot of Analog Bandstop filter')
plt.ylabel('Imaginary')
plt.xlabel('Real')
#Tedious still basic version
#Need to try convolution
#Numerator= (omega_0^2+1)z^2+2*(omega_0^2-1)z+(omega_0^2+1)
#Denominator= (-B-c-c*omega_0^2)z^2+(2*c-2*c*omega_0^2)z+(-c*omega_0^2-c+B)
numer=K_butter
denom=1+0.j
for c in poles_a:
if(c.real<= 0):
numer=np.poly1d([(omega_z_s+1),2*(omega_z_s-1),(omega_z_s+1)],r=0)*numer
#denom=np.poly1d([(f_B-omega_z_s*c-c),(2*c-2*c*omega_z_s),(-c-f_B-c*omega_z_s)],r=0)*denom
denom=np.poly1d([(-f_B-omega_z_s*c-c),(2*c-2*c*omega_z_s),(-c+f_B-c*omega_z_s)],r=0)*denom
#print m,q_m,r_m,B_l_m,B_h_m
#print "Analog frequencies",f_analog_a
#print "Digital frequencies",f_digital_a
#print "Equivalent Digital frequencies",f_eqv_analog_a
#print "Equivalent Analog lpf freq",f_eqv_analog_lpf_a
#print np.sqrt(D_1),np.sqrt(D_2)
#print "Order",N
#print A_k
#print "Poles",poles_a
print "Numerator\n",numer
print "\nDenominator:\n",denom
#plotting poles
plt.figure(1)
plt.grid(True)
neg_poles=np.zeros([0],dtype='complex64')
for c in poles_a:
if(c.real<= 0):
neg_poles=np.append(neg_poles,c)
plt.scatter(neg_poles.real,neg_poles.imag,s=50,marker='x')
plt.title('Pole Zero plot of Low pass filter')
plt.ylabel('Imaginary')
plt.xlabel('Real')
nmrz=(numer.c).round(decimals=6)[::-1].real
dmrz=(denom.c).round(decimals=6)[::-1].real
z,p,k=sg.tf2zpk(nmrz,dmrz)
#print "Check",z,p,k
plt.figure(4)
plt.grid(True)
plt.scatter(p.real,p.imag,s=50,marker='x')
plt.scatter(z.real,z.imag,s=50,marker='o')
plt.title('Pole Zero plot of Digital Bandstop filter')
plt.ylabel('Imaginary')
plt.xlabel('Real')
print "\nNormalized numerator:\n",nmrz/dmrz[0]
print "\nNormalized denominator:\n",dmrz/dmrz[0]
nyq_rate=f_sample/2
#Lattice Coefficients for IIR
An=dmrz/dmrz[0]
Bn=nmrz/dmrz[0]
N=len(dmrz)
Kn=np.zeros(N)
Cn=np.zeros(N)
for i in np.arange(N-1,-1,-1):
Kn[i]=An[i]
Cn[i]=Bn[i]
An_tilda=An[::-1]
if(Kn[i] != 1):
An=(An-(Kn[i]*An_tilda))/(1-(Kn[i]**2))
Bn=(Bn-Cn[i]*An_tilda)
An=np.delete(An,len(An)-1)
Bn=np.delete(Bn,len(Bn)-1)
print "\nLattice Coefficients:Kn\n",Kn[1:]
print "\nLattice Coefficients:Cn\n",Cn
#Plot Frequency response
plt.figure(2)
plt.clf()
plt.grid(True)
w,h= sg.freqz(nmrz,dmrz,worN=512)
plt.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.title('Frequency Response')
plt.ylim(-0.05, 1.05)
# Upper inset plot.
ax1 = plt.axes([0.44, 0.56, .45, .25])
plt.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
plt.xlim(4000.0,15000.0)
plt.ylim(-0.01, 0.2)
plt.grid(True)
# Lower inset plot.
ax1 = plt.axes([0.44, 0.22, .45, .25])
plt.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
plt.xlim(4000.0,15000.0)
plt.ylim(0.96, 1.05)
plt.grid(True)
plt.figure(3)
plt.grid(True)
h_Phase = pl.unwrap(np.arctan2(np.imag(h),np.real(h)))
plt.plot(w/max(w),h_Phase)
plt.ylabel('Phase (radians)')
plt.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
plt.title(r'Phase response')
plt.show()