-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathdataset.py
417 lines (317 loc) · 15.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import numpy as np
import tensorflow as tf
import cv2
from matplotlib import pyplot as plt
import json
import codecs
from PIL import Image, ImageDraw, ImageFont
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
import config as cfg
max_len = cfg.seq_len + 1
base_dir = cfg.base_dir
font_path = cfg.font_path
dataset_path = { 'art': os.path.join(base_dir, 'art/train_task2_images'),
'rects': os.path.join(base_dir, 'rects/img'),
'lsvt': os.path.join(base_dir, 'lsvt/train'),
'icdar2017rctw': os.path.join(base_dir, 'icdar2017rctw/train'), }
lsvt_annotation = os.path.join(base_dir, 'lsvt/train_full_labels.json')
art_annotation = os.path.join(base_dir, 'art/train_task2_labels.json')
def visualization(image_path, points, label, vis_color = (255,255,255)):
"""
Visualize groundtruth label to image.
"""
points = np.asarray(points, dtype=np.int32)
points = np.reshape(points, [-1,2])
image = cv2.imread(image_path)
cv2.polylines(image, [points], 1, (0,255,0), 2)
image = Image.fromarray(image)
FONT = ImageFont.truetype(font_path, 20, encoding='utf-8')
DRAW = ImageDraw.Draw(image)
DRAW.text(points[0], label, vis_color, font=FONT)
return np.array(image)
def strQ2B(uchar):
"""
Convert full-width character to half-width character.
"""
inside_code = ord(uchar)
if inside_code == 12288:
inside_code = 32
elif (inside_code >= 65281 and inside_code <= 65374):
inside_code -= 65248
return chr(inside_code)
def preprocess(string):
"""
Groundtruth label preprocess function.
"""
# string = [strQ2B(ch) for ch in string.strip()]
# return ''.join(string)
return string
class Dataset(object):
"""
Base class for text dataset preprocess.
"""
def __init__(self, name='base', max_len=max_len, base_dir=base_dir, label_dict=cfg.reverse_label_dict): # label_dict label_dict_with_rects 5434+1
self.data_path = dataset_path[name]
print(self.data_path)
self.label_dict = label_dict
self.max_len = max_len
self.base_dir = base_dir
self.filenames = []
self.labels = []
self.masks = []
self.bboxes = []
self.points = []
class ReCTS(Dataset):
"""
ICDAR2019 ReCTS dataset, refer to https://rrc.cvc.uab.es/?ch=12&com=downloads.
"""
def __init__(self, name='rects'):
super(ReCTS, self).__init__(name=name)
def load_data(self):
label_folder = os.path.join(self.base_dir, 'rects/gt_unicode/') #gt_unicode gt
for filename in os.listdir(label_folder):
img_name = os.path.join(self.data_path, filename[:-5]+'.jpg')
# image = cv2.imread(img_name)
# print(img_name)
with open(os.path.join(label_folder, filename)) as f:
json_data = json.load(f)
anno_data = json_data['lines']
points = [anno['points'] for anno in anno_data]
transcripts = [anno['transcription'] for anno in anno_data]
ignores = [anno['ignore'] for anno in anno_data]
for polygon, transcript, ignore in zip(points, transcripts, ignores):
if ignore:
continue
if len(transcript)>self.max_len-1:
continue
if transcript=='###':
continue
transcript = preprocess(transcript)
skip = False
for char in transcript:
if char not in self.label_dict.keys():
skip = True
if skip:
print(transcript)
continue
seq_label = []
for char in transcript:
seq_label.append(self.label_dict[char])#.decode('utf-8')
seq_label.append(self.label_dict['EOS'])
non_zero_count = len(seq_label)
seq_label = seq_label + [self.label_dict['EOS']]*(self.max_len-non_zero_count)
mask = [1]*(non_zero_count) + [0]*(self.max_len-non_zero_count)
polygon = np.array(polygon, dtype=np.int64)
polygon = np.reshape(polygon, (-1,2))
points_x = [point[0] for point in polygon]
points_y = [point[1] for point in polygon]
bbox = [np.amin(points_y), np.amin(points_x), np.amax(points_y), np.amax(points_x)] # ymin, xmin, ymax, xmax
bbox = [int(item) for item in bbox]
bbox_w, bbox_h = bbox[3]-bbox[1], bbox[2]-bbox[0]
if bbox_w <8 or bbox_h <8:
continue
# print(transcript, seq_label, mask, polygon)
# img = visualization(img_name, polygon, transcript)
# plt.imshow(img)
# plt.show()
self.filenames.append(img_name)
self.labels.append(seq_label)
self.masks.append(mask)
self.bboxes.append(bbox)
self.points.append(polygon)
class ART(Dataset):
"""
ICDAR2019 ArT dataset, refer to https://rrc.cvc.uab.es/?ch=14&com=downloads.
"""
def __init__(self, name='art'):
super(ART, self).__init__(name=name)
def load_data(self, annotation_file=art_annotation):
count = 0
with open(annotation_file) as f:
json_data = json.load(f)
for filename in os.listdir(self.data_path):
img_name = os.path.join(self.data_path, filename)
#image = cv2.imread(img_name)
#image_height, image_width = image.shape[:2]
anno_data = json_data[filename[:-4]][0]
# print(len(json_data[filename[:-4]]))
illegibility = anno_data['illegibility']
if illegibility:
continue
polygon = anno_data['points']
transcripts = anno_data['transcription']
languages = anno_data['language']
if len(transcripts)>self.max_len-1:
# print(transcripts)
# count = count + 1
continue
transcripts = preprocess(transcripts)
skip = False
for char in transcripts:
if char not in self.label_dict.keys():
skip = True
if skip:
# print(transcripts)
count = count + 1
continue
# print(polygon, transcripts)
seq_label = []
for char in transcripts:
seq_label.append(self.label_dict[char])#.decode('utf-8')
seq_label.append(self.label_dict['EOS'])
non_zero_count = len(seq_label)
seq_label = seq_label + [self.label_dict['EOS']]*(self.max_len-non_zero_count)
mask = [1]*(non_zero_count) + [0]*(self.max_len-non_zero_count)
points_x = [point[0] for point in polygon]
points_y = [point[1] for point in polygon]
bbox = [np.amin(points_y), np.amin(points_x), np.amax(points_y), np.amax(points_x)] # ymin, xmin, ymax, xmax
bbox = [int(item) for item in bbox]
bbox_w, bbox_h = bbox[3]-bbox[1], bbox[2]-bbox[0]
if bbox_w <8 or bbox_h <8:
continue
# print(transcripts, seq_label, mask, polygon)
# img = visualization(img_name, polygon, transcripts)
# plt.imshow(img)
# plt.show()
self.filenames.append(img_name)
self.labels.append(seq_label)
self.masks.append(mask)
self.bboxes.append(bbox)
self.points.append(polygon)
class LSVT(Dataset):
"""
ICDAR2019 LSVT dataset, refer to https://rrc.cvc.uab.es/?ch=16&com=downloads.
"""
def __init__(self, name='lsvt'):
super(LSVT, self).__init__(name=name)
def load_data(self, annotation_file=lsvt_annotation):
with open(annotation_file) as f:
json_data = json.load(f)
for filename in os.listdir(self.data_path):
img_name = os.path.join(self.data_path, filename)
#image = cv2.imread(img_name)
#image_height, image_width = image.shape[:2]
anno_data = json_data[filename[:-4]]
# print(len(json_data[filename[:-4]]))
# print(anno_data)
points = [anno['points'] for anno in anno_data]
transcripts = [anno['transcription'] for anno in anno_data]
illegibilities = [anno['illegibility'] for anno in anno_data]
for polygon, transcript, illegibility in zip(points, transcripts, illegibilities):
if transcript == '###':
continue
transcript = preprocess(transcript.strip())
if len(transcript)>self.max_len-1:
# print(transcripts)
# count = count + 1
continue
skip = False
for char in transcript:
if char not in self.label_dict.keys():
skip = True
if skip:
continue
# print(polygon, transcripts)
seq_label = []
for char in transcript:
seq_label.append(self.label_dict[char])#.decode('utf-8')
seq_label.append(self.label_dict['EOS'])
non_zero_count = len(seq_label)
seq_label = seq_label + [self.label_dict['EOS']]*(self.max_len-non_zero_count)
mask = [1]*(non_zero_count) + [0]*(self.max_len-non_zero_count)
points_x = [point[0] for point in polygon]
points_y = [point[1] for point in polygon]
bbox = [np.amin(points_y), np.amin(points_x), np.amax(points_y), np.amax(points_x)] # ymin, xmin, ymax, xmax
bbox = [int(item) for item in bbox]
bbox_w, bbox_h = bbox[3]-bbox[1], bbox[2]-bbox[0]
if bbox_w <8 or bbox_h <8:
continue
# print(transcript, seq_label, mask, polygon)
# img = visualization(img_name, polygon, transcript)
# plt.imshow(img)
# plt.show()
self.filenames.append(img_name)
self.labels.append(seq_label)
self.masks.append(mask)
self.bboxes.append(bbox)
self.points.append(polygon)
class ICDAR2017RCTW(Dataset):
"""
ICDAR2017 RCTW-17 dataset, refer to http://rctw.vlrlab.net/dataset/.
"""
def __init__(self, name='icdar2017rctw'):
super(ICDAR2017RCTW, self).__init__(name=name)
self.transcripts = []
def load_data(self):
for filename in os.listdir(self.data_path):
if filename.endswith(".jpg"):
img_path = os.path.join(self.data_path, filename)
with codecs.open(os.path.join(self.data_path, filename[:-4]+'.txt'), 'r') as f:
lines = f.readlines()
for line in lines:
res = line.split(",", 10)
label = res[9][1:-2]#.decode('utf-8')
if label=='###':
continue
if len(label)>self.max_len-1:
continue
label = preprocess(label)
skip = False
for char in label:
if char not in self.label_dict.keys():
skip = True
#if label[0] not in label_dict.keys():
if skip:
continue
seq_label = []
for char in label:
seq_label.append(self.label_dict[char])#.decode('utf-8')
seq_label.append(self.label_dict['EOS'])
non_zero_count = len(seq_label)
seq_label = seq_label + [self.label_dict['EOS']]*(self.max_len-non_zero_count)
mask = [1]*(non_zero_count) + [0]*(self.max_len-non_zero_count)
try:
vertex_row_coords= [int(res[1]), int(res[3]), int(res[5]), int(res[7])]
vertex_col_coords = [int(res[0]), int(res[2]), int(res[4]), int(res[6])]
except:
continue
bbox = [np.amin(vertex_row_coords), np.amin(vertex_col_coords), np.amax(vertex_row_coords), np.amax(vertex_col_coords)]
polygon = [[int(res[0]),int(res[1])],[int(res[2]),int(res[3])],[int(res[4]),int(res[5])],[int(res[6]),int(res[7])]]
#print(bbox[2]-bbox[0], bbox[3]-bbox[1])
bbox_w, bbox_h = bbox[3]-bbox[1], bbox[2]-bbox[0]
if bbox_w <8 or bbox_h <8:
continue
# print(polygon, label, seq_label, mask)
# image = visualization(img_path, polygon, label)
# plt.imshow(image)
# plt.show()
self.filenames.append(img_path)
self.labels.append(seq_label)
self.masks.append(mask)
self.bboxes.append(bbox)
self.points.append(polygon)
self.transcripts.append(label)
if __name__=='__main__':
LSVT = LSVT()
LSVT.load_data()
print(len(LSVT.filenames))
ART = ART()
ART.load_data()
print(len(ART.filenames))
ReCTS = ReCTS()
ReCTS.load_data()
print(len(ReCTS.filenames))
filenames = LSVT.filenames + ART.filenames + ReCTS.filenames
labels = LSVT.labels + ART.labels + ReCTS.labels
masks = LSVT.masks + ART.masks + ReCTS.masks
bboxes = LSVT.bboxes + ART.bboxes + ReCTS.bboxes
points = LSVT.points + ART.points + ReCTS.points
from sklearn.utils import shuffle
filenames, labels, masks, bboxes, points = shuffle(filenames, labels, masks, bboxes, points, random_state=0)
print(len(filenames))
dataset = {"filenames":filenames, "labels":labels, "masks":masks, "bboxes":bboxes, "points":points}
np.save(cfg.dataset_name, dataset)