forked from intelligent-control-lab/AGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_utils.py
181 lines (161 loc) · 7.93 KB
/
validate_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import h5py, os, pdb
import numpy as np
import utils
import tensorflow as tf
import hyperparams
from julia_env.julia_env import JuliaEnv
from my_gaussian_gru_policy import myGaussianGRUPolicy
NGSIM_FILENAME_TO_ID = {
'trajdata_i101_trajectories-0750am-0805am.txt': 1,
'trajdata_i101-22agents-0750am-0805am.txt' : 1
}
def load_validate_data(
filepath,
act_keys=['accel', 'turn_rate_global'],
ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt',
debug_size=None,
min_length=50,
normalize_data=True,
shuffle=False,
act_low=-1,
act_high=1,
clip_std_multiple=np.inf):
# loading varies based on dataset type
x, feature_names = utils.load_x_feature_names(filepath, ngsim_filename)
# no need to flatten
obs = x
act_idxs = [i for (i,n) in enumerate(feature_names) if n in act_keys]
act = x[:, :, act_idxs]
if normalize_data:
obs, obs_mean, obs_std = normalize(obs, clip_std_multiple)
# normalize actions to between -1 and 1
act = normalize_range(act, act_low, act_high)
else:
obs_mean = None
obs_std = None
return dict(
observations=obs,
actions=act,
obs_mean=obs_mean,
obs_std=obs_std,
)
def normalize(x, clip_std_multiple=np.inf):
mean = np.mean(np.mean(x, axis=0),axis=0, keepdims=True)
x = x - mean
x_flatten = np.reshape(x, [-1, 66])
std = np.std(x_flatten, axis=0, keepdims=True) + 1e-8
up = std * clip_std_multiple
lb = - std * clip_std_multiple
x = np.clip(x, lb, up)
x = x / std
return x, mean, std
def normalize_range(x, low, high):
low = np.array(low)
high = np.array(high)
mean = (high + low) / 2.
half_range = (high - low) / 2.
x = (x - mean) / half_range
x = np.clip(x, -1, 1)
return x
def build_policy(args, env, latent_sampler=None):
print("GaussianGRUPolicy")
policy = myGaussianGRUPolicy(
name="policy",
env_spec=env.spec,
hidden_dim=args.recurrent_hidden_dim,
output_nonlinearity=None,
learn_std=True
)
return policy
def get_ground_truth():
# filepath = '../../data/trajectories/ngsim_22agents.h5'
# ngsim_filename='trajdata_i101-22agents-0750am-0805am.txt'
# filepath = '../../data/trajectories/ngsim.h5'
# ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt'
# x, feature_names = load_x_feature_names(filepath, ngsim_filename)
# clip_std_multiple = 10.
# x, obs_mean, obs_std = normalize(x, clip_std_multiple)
# # x.shape = [2150, 1010, 66]
# hyperparamters
'''Namespace(batch_size=10000, critic_batch_size=1000, critic_dropout_keep_prob=0.8, critic_grad_rescale=40.0, critic_hidden_layer_dims=(128, 128, 64), critic_learning_rate=0.0004, decay_reward=False, discount=0.95, do_curriculum=False, env_H=200, env_action_repeat=1, env_multiagent=False, env_primesteps=50, env_reward=0, exp_dir='../../data/experiments', exp_name='singleagent_def_3', expert_filepath='../../data/trajectories/ngsim.h5', gradient_penalty=2.0, itrs_per_decay=25, latent_dim=4, load_params_init='NONE', max_path_length=1000, n_critic_train_epochs=40, n_envs=1, n_envs_end=50, n_envs_start=10, n_envs_step=10, n_itr=1000, n_recognition_train_epochs=30, ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', normalize_clip_std_multiple=10.0, params_filepath='', policy_mean_hidden_layer_dims=(128, 128, 64), policy_recurrent=True, policy_std_hidden_layer_dims=(128, 64), recognition_hidden_layer_dims=(128, 64), recognition_learning_rate=0.0005, recurrent_hidden_dim=64, remove_ngsim_veh=False, render_every=25, reward_handler_critic_final_scale=1.0, reward_handler_max_epochs=100, reward_handler_recognition_final_scale=0.2, reward_handler_use_env_rewards=True, scheduler_k=20, trpo_step_size=0.01, use_critic_replay_memory=True, use_infogail=False, validator_render=False, vectorize=True)'''
# build components
# env, act_low, act_high = utils.build_ngsim_env(args, exp_dir, vectorize=True)
act_low = np.array([-4, -0.15])
act_high= np.array([4, 0.15])
data = load_validate_data(
'../../data/trajectories/ngsim.h5',
act_low=act_low,
act_high=act_high,
min_length= 200 + 50,
clip_std_multiple=10.0,
ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt'
)
return data
def get_multiagent_ground_truth():
# filepath = '../../data/trajectories/ngsim_22agents.h5'
# ngsim_filename='trajdata_i101-22agents-0750am-0805am.txt'
# filepath = '../../data/trajectories/ngsim.h5'
# ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt'
# x, feature_names = load_x_feature_names(filepath, ngsim_filename)
# clip_std_multiple = 10.
# x, obs_mean, obs_std = normalize(x, clip_std_multiple)
# # x.shape = [2150, 1010, 66]
# hyperparamters
'''Namespace(batch_size=10000, critic_batch_size=1000, critic_dropout_keep_prob=0.8, critic_grad_rescale=40.0, critic_hidden_layer_dims=(128, 128, 64), critic_learning_rate=0.0004, decay_reward=False, discount=0.95, do_curriculum=False, env_H=200, env_action_repeat=1, env_multiagent=False, env_primesteps=50, env_reward=0, exp_dir='../../data/experiments', exp_name='singleagent_def_3', expert_filepath='../../data/trajectories/ngsim.h5', gradient_penalty=2.0, itrs_per_decay=25, latent_dim=4, load_params_init='NONE', max_path_length=1000, n_critic_train_epochs=40, n_envs=1, n_envs_end=50, n_envs_start=10, n_envs_step=10, n_itr=1000, n_recognition_train_epochs=30, ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', normalize_clip_std_multiple=10.0, params_filepath='', policy_mean_hidden_layer_dims=(128, 128, 64), policy_recurrent=True, policy_std_hidden_layer_dims=(128, 64), recognition_hidden_layer_dims=(128, 64), recognition_learning_rate=0.0005, recurrent_hidden_dim=64, remove_ngsim_veh=False, render_every=25, reward_handler_critic_final_scale=1.0, reward_handler_max_epochs=100, reward_handler_recognition_final_scale=0.2, reward_handler_use_env_rewards=True, scheduler_k=20, trpo_step_size=0.01, use_critic_replay_memory=True, use_infogail=False, validator_render=False, vectorize=True)'''
# build components
# env, act_low, act_high = utils.build_ngsim_env(args, exp_dir, vectorize=True)
act_low = np.array([-4, -0.15])
act_high= np.array([4, 0.15])
data = load_validate_data(
'../../data/trajectories/ngsim_22agents.h5',
act_low=act_low,
act_high=act_high,
min_length= 200 + 50,
clip_std_multiple=10.0,
ngsim_filename='trajdata_i101-22agents-0750am-0805am.txt'
)
return data
if __name__ == '__main__':
data = get_multiagent_ground_truth()
selected = [14, 27, 44, 120, 196]
get_ground_truth()
def build_ngsim_env(
args,
exp_dir='/tmp',
alpha=0.001,
vectorize=False,
render_params=None,
videoMaking=False):
basedir = os.path.expanduser('~/.julia/v0.6/NGSIM/data')
filepaths = [os.path.join(basedir, 'trajdata_i101_trajectories-0750am-0805am.txt')]
if render_params is None:
render_params = dict(
viz_dir=os.path.join(exp_dir, 'imitate/viz'),
zoom=5.
)
env_params = dict(
trajectory_filepaths=filepaths,
H=200,
primesteps=50,
action_repeat=1,
terminate_on_collision=False,
terminate_on_off_road=False,
render_params=render_params,
n_envs=1,
n_veh=1,
remove_ngsim_veh=False,
reward=0
)
# order matters here because multiagent is a subset of vectorized
# i.e., if you want to run with multiagent = true, then vectorize must
# also be true
env_id = 'MultiagentNGSIMEnv'
env = JuliaEnv(
env_id=env_id,
env_params=env_params,
using='AutoEnvs'
)
# get low and high values for normalizing _real_ actions
low, high = env.action_space.low, env.action_space.high
env = None
return env, low, high