diff --git a/.gitignore b/.gitignore index a6f31d68..8dc41c79 100644 --- a/.gitignore +++ b/.gitignore @@ -11,4 +11,5 @@ tmaps src/*.so src/*.o test.R -test.cpp \ No newline at end of file +test.cpp +test \ No newline at end of file diff --git a/R/SCP-analysis.R b/R/SCP-analysis.R index 7150d39c..bc3ea50f 100644 --- a/R/SCP-analysis.R +++ b/R/SCP-analysis.R @@ -3996,6 +3996,8 @@ RunEnrichment <- function(srt = NULL, group_by = NULL, test.use = "wilcox", DE_t results <- results[!sapply(results, is.null)] results <- results[intersect(c(nm, paste0(nm, "_sim")), names(results))] enrichment <- do.call(rbind, lapply(results, function(x) x@result)) + enrichment[["Groups"]] <- factor(enrichment[["Groups"]], levels = levels(geneID_groups)) + enrichment[["Database"]] <- factor(enrichment[["Database"]], levels = unique(enrichment[["Database"]])) rownames(enrichment) <- NULL time_end <- Sys.time() @@ -4293,6 +4295,8 @@ RunGSEA <- function(srt = NULL, group_by = NULL, test.use = "wilcox", DE_thresho results <- results[!sapply(results, is.null)] results <- results[intersect(c(nm, paste0(nm, "_sim")), names(results))] enrichment <- do.call(rbind, lapply(results, function(x) x@result)) + enrichment[["Groups"]] <- factor(enrichment[["Groups"]], levels = levels(geneID_groups)) + enrichment[["Database"]] <- factor(enrichment[["Database"]], levels = unique(enrichment[["Database"]])) rownames(enrichment) <- NULL time_end <- Sys.time() diff --git a/R/SCP-app.R b/R/SCP-app.R index e8f165e8..ef92ec2a 100644 --- a/R/SCP-app.R +++ b/R/SCP-app.R @@ -595,7 +595,7 @@ RunSCExplorer <- function(base_dir = "SCExplorer", initial_raster = NULL, session_workers = 2, plotting_workers = 8, - create_script = FALSE, + create_script = TRUE, style_script = require("styler", quietly = TRUE), overwrite = FALSE) { check_R(c("rhdf5", "HDF5Array", "shiny@1.6.0", "ggplot2", "ragg", "htmlwidgets", "plotly", "bslib", "future", "promises", "BiocParallel")) diff --git a/R/SCP-plot.R b/R/SCP-plot.R index 57eb7c88..2d167197 100644 --- a/R/SCP-plot.R +++ b/R/SCP-plot.R @@ -1325,7 +1325,7 @@ BlendRGBList <- function(Clist, mode = "blend", RGB_BackGround = c(1, 1, 1)) { #' ) #' @importFrom Seurat Reductions Embeddings Key #' @importFrom dplyr group_by "%>%" .data -#' @importFrom ggplot2 ggplot aes geom_point geom_density_2d stat_density_2d geom_segment labs scale_x_continuous scale_y_continuous scale_size_continuous facet_grid scale_color_manual scale_fill_manual guides guide_legend geom_hex geom_path theme_void annotation_custom scale_linewidth_continuous after_stat +#' @importFrom ggplot2 ggplot aes geom_point geom_rug geom_density_2d stat_density_2d geom_segment labs scale_x_continuous scale_y_continuous scale_size_continuous facet_grid scale_color_manual scale_fill_manual guides guide_legend geom_hex geom_path theme_void annotation_custom scale_linewidth_continuous after_stat #' @importFrom ggrepel geom_text_repel #' @importFrom ggnewscale new_scale_color new_scale_fill new_scale #' @importFrom gtable gtable_add_cols gtable_add_grob @@ -1345,6 +1345,7 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b cells.highlight = NULL, cols.highlight = "black", sizes.highlight = 1, alpha.highlight = 1, stroke.highlight = 0.5, add_density = FALSE, density_color = "grey80", density_filled = FALSE, density_filled_palette = "Greys", density_filled_palcolor = NULL, add_mark = FALSE, mark_type = c("hull", "ellipse", "rect", "circle"), mark_expand = unit(3, "mm"), mark_alpha = 0.1, mark_linetype = 1, + add_rug = FALSE, rug_alpha = 1, rug_outside = FALSE, rug_sides = "bl", rug_length = unit(0.03, "npc"), lineages = NULL, lineages_trim = c(0.01, 0.99), lineages_span = 0.75, lineages_palette = "Dark2", lineages_palcolor = NULL, lineages_arrow = arrow(length = unit(0.1, "inches")), lineages_linewidth = 1, lineages_line_bg = "white", lineages_line_bg_stroke = 0.5, @@ -1433,6 +1434,7 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b colnames(dat_dim) <- paste0(reduction_key, seq_len(ncol(dat_dim))) rownames(dat_dim) <- rownames(dat_dim) %||% colnames(srt@assays[[1]]) dat_use <- cbind(dat_dim, dat_meta[row.names(dat_dim), , drop = FALSE]) + dat_use[["cell"]] <- rownames(dat_use) if (!is.null(cells)) { dat_use <- dat_use[intersect(rownames(dat_use), cells), , drop = FALSE] } @@ -1453,7 +1455,7 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b cells = cells, stat.by = stat.by, group.by = group.by, split.by = split.by, stat_type = stat_type, plot_type = stat_plot_type, position = stat_plot_position, - palette = stat_plot_palette, palcolor = stat_palcolor, alpha = stat_plot_alpha, + palette = stat_plot_palette, palcolor = stat_palcolor, alpha = stat_plot_alpha, bg_palcolor = "transparent", label = stat_plot_label, label.size = stat_plot_label_size, legend.position = "bottom", legend.direction = legend.direction, theme_use = theme_use, theme_args = theme_args, @@ -1639,7 +1641,16 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b density <- NULL } + if (isTRUE(add_rug)) { + rug <- list(geom_rug(aes(x = .data[["x"]], y = .data[["y"]], color = .data[["group.by"]]), + alpha = rug_alpha, outside = rug_outside, sides = rug_sides, length = rug_length + )) + } else { + rug <- NULL + } + p <- ggplot(dat) + + rug + mark + net + density + @@ -1680,10 +1691,10 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b ) } } else { - p <- p + geom_point( - mapping = aes(x = .data[["x"]], y = .data[["y"]], color = .data[["group.by"]]), + p <- p + suppressWarnings(geom_point( + mapping = aes(x = .data[["x"]], y = .data[["y"]], color = .data[["group.by"]], cell = .data[["cell"]]), size = pt.size, alpha = pt.alpha - ) + )) } if (!is.null(cells.highlight_use) && !isTRUE(hex)) { @@ -1703,10 +1714,10 @@ CellDimPlot <- function(srt, group.by, reduction = NULL, dims = c(1, 2), split.b data = cell_df, aes(x = .data[["x"]], y = .data[["y"]]), color = cols.highlight, size = sizes.highlight + stroke.highlight, alpha = alpha.highlight ) + - geom_point( - data = cell_df, aes(x = .data[["x"]], y = .data[["y"]], color = .data[["group.by"]]), + suppressWarnings(geom_point( + data = cell_df, aes(x = .data[["x"]], y = .data[["y"]], color = .data[["group.by"]], cell = .data[["cell"]]), size = sizes.highlight, alpha = alpha.highlight - ) + )) } } } @@ -2223,6 +2234,7 @@ FeatureDimPlot <- function(srt, features, reduction = NULL, dims = c(1, 2), spli rownames(dat_dim) <- rownames(dat_dim) %||% colnames(srt@assays[[1]]) dat_sp <- srt@meta.data[, split.by, drop = FALSE] dat_use <- cbind(dat_dim, dat_sp[row.names(dat_dim), , drop = FALSE]) + dat_use[["cell"]] <- rownames(dat_use) if (!is.null(cells)) { dat_use <- dat_use[intersect(rownames(dat_use), cells), , drop = FALSE] } @@ -2404,10 +2416,10 @@ FeatureDimPlot <- function(srt, features, reduction = NULL, dims = c(1, 2), spli scale_color_identity() + new_scale_color() } else { - p <- p + geom_point( + p <- p + suppressWarnings(geom_point( mapping = aes(x = .data[["x"]], y = .data[["y"]], color = .data[["color_blend"]]), size = pt.size, alpha = pt.alpha - ) + + )) + scale_color_identity() + new_scale_color() } @@ -2432,10 +2444,10 @@ FeatureDimPlot <- function(srt, features, reduction = NULL, dims = c(1, 2), spli data = cell_df, aes(x = .data[["x"]], y = .data[["y"]]), color = cols.highlight, size = sizes.highlight + stroke.highlight, alpha = alpha.highlight ) + - geom_point( + suppressWarnings(geom_point( data = cell_df, aes(x = .data[["x"]], y = .data[["y"]], color = .data[["color_blend"]]), size = sizes.highlight, alpha = alpha.highlight - ) + + )) + scale_color_identity() + new_scale_color() } @@ -2703,10 +2715,10 @@ FeatureDimPlot <- function(srt, features, reduction = NULL, dims = c(1, 2), spli p <- p + new_scale_fill() } } else { - p <- p + geom_point( - mapping = aes(x = .data[["x"]], y = .data[["y"]], color = .data[["value"]]), + p <- p + suppressWarnings(geom_point( + mapping = aes(x = .data[["x"]], y = .data[["y"]], color = .data[["value"]], cell = .data[["cell"]]), size = pt.size, alpha = pt.alpha - ) + )) } if (!is.null(cells.highlight_use) && !isTRUE(hex)) { cell_df <- subset(p$data, rownames(p$data) %in% cells.highlight_use) @@ -2726,10 +2738,10 @@ FeatureDimPlot <- function(srt, features, reduction = NULL, dims = c(1, 2), spli data = cell_df, aes(x = .data[["x"]], y = .data[["y"]]), color = cols.highlight, size = sizes.highlight + stroke.highlight, alpha = alpha.highlight ) + - geom_point( - data = cell_df, aes(x = .data[["x"]], y = .data[["y"]], color = .data[["value"]]), + suppressWarnings(geom_point( + data = cell_df, aes(x = .data[["x"]], y = .data[["y"]], color = .data[["value"]], cell = .data[["cell"]]), size = sizes.highlight, alpha = alpha.highlight - ) + )) } } } @@ -3547,9 +3559,9 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b calculate_coexp = FALSE, range = c(-Inf, Inf), same.y.lims = FALSE, y.min = NULL, y.max = NULL, y.trans = "identity", y.nbreaks = 5, sort = FALSE, stack = FALSE, flip = FALSE, - comparisons = NULL, ref_group = NULL, pairwise_method = "wilcox.test", - multiplegroup_comparisons = FALSE, multiple_method = "kruskal.test", - sig_label = c("p.signif", "p.format"), sig_labelsize = 3.5, + comparisons = NULL, ref_group = NULL, pairwise_method = "wilcox.test", pairwise_method_args = list(), + multiplegroup_comparisons = FALSE, multiple_method = "kruskal.test", multiple_method_args = list(), + sig_label = c("p.signif", "p.format"), sig_labelsize = 3.5, sig_stepincrease = 0.15, aspect.ratio = NULL, title = NULL, subtitle = NULL, xlab = NULL, ylab = "Expression", legend.position = "right", legend.direction = "vertical", theme_use = "theme_scp", theme_args = list(), @@ -3601,9 +3613,9 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b calculate_coexp = calculate_coexp, range = range, same.y.lims = same.y.lims, y.min = y.min, y.max = y.max, y.trans = y.trans, y.nbreaks = y.nbreaks, sort = sort, stack = stack, flip = flip, - comparisons = comparisons, ref_group = ref_group, pairwise_method = pairwise_method, - multiplegroup_comparisons = multiplegroup_comparisons, multiple_method = multiple_method, - sig_label = sig_label, sig_labelsize = sig_labelsize, + comparisons = comparisons, ref_group = ref_group, pairwise_method = pairwise_method, pairwise_method_args = pairwise_method_args, + multiplegroup_comparisons = multiplegroup_comparisons, multiple_method = multiple_method, multiple_method_args = multiple_method_args, + sig_label = sig_label, sig_labelsize = sig_labelsize, sig_stepincrease = sig_stepincrease, aspect.ratio = aspect.ratio, title = title, subtitle = subtitle, xlab = xlab, ylab = ylab, legend.position = legend.position, legend.direction = legend.direction, theme_use = theme_use, theme_args = theme_args, @@ -3629,9 +3641,9 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b calculate_coexp = calculate_coexp, range = range, same.y.lims = same.y.lims, y.min = y.min, y.max = y.max, y.trans = y.trans, y.nbreaks = y.nbreaks, sort = sort, stack = stack, flip = flip, - comparisons = comparisons, ref_group = ref_group, pairwise_method = pairwise_method, - multiplegroup_comparisons = multiplegroup_comparisons, multiple_method = multiple_method, - sig_label = sig_label, sig_labelsize = sig_labelsize, + comparisons = comparisons, ref_group = ref_group, pairwise_method = pairwise_method, pairwise_method_args = pairwise_method_args, + multiplegroup_comparisons = multiplegroup_comparisons, multiple_method = multiple_method, multiple_method_args = multiple_method_args, + sig_label = sig_label, sig_labelsize = sig_labelsize, sig_stepincrease = sig_stepincrease, aspect.ratio = aspect.ratio, title = title, subtitle = subtitle, xlab = xlab, ylab = ylab, legend.position = legend.position, legend.direction = legend.direction, theme_use = theme_use, theme_args = theme_args, @@ -3753,9 +3765,9 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp calculate_coexp = FALSE, range = c(-Inf, Inf), same.y.lims = FALSE, y.min = NULL, y.max = NULL, y.trans = "identity", y.nbreaks = 5, sort = FALSE, stack = FALSE, flip = FALSE, - comparisons = NULL, ref_group = NULL, pairwise_method = "wilcox.test", - multiplegroup_comparisons = FALSE, multiple_method = "kruskal.test", - sig_label = c("p.signif", "p.format"), sig_labelsize = 3.5, + comparisons = NULL, ref_group = NULL, pairwise_method = "wilcox.test", pairwise_method_args = list(), + multiplegroup_comparisons = FALSE, multiple_method = "kruskal.test", multiple_method_args = list(), + sig_label = c("p.signif", "p.format"), sig_labelsize = 3.5, sig_stepincrease = 0.15, aspect.ratio = NULL, title = NULL, subtitle = NULL, xlab = NULL, ylab = "Expression", legend.position = "right", legend.direction = "vertical", theme_use = "theme_scp", theme_args = list(), @@ -4129,14 +4141,16 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp if (plot_type == "col") { if (isTRUE(flip)) { - dat[["cell"]] <- rev(seq_len(nrow(dat))) + dat[["rank"]] <- rev(seq_len(nrow(dat))) } else { - dat[["cell"]] <- seq_len(nrow(dat)) + dat[["rank"]] <- seq_len(nrow(dat)) } + x_index <- split(dat[["rank"]], dat[["group.by"]]) p <- ggplot(dat, aes( - x = .data[["cell"]], y = .data[["value"]], fill = .data[["fill.by"]] + x = .data[["rank"]], y = .data[["value"]], fill = .data[["fill.by"]] )) } else { + x_index <- NULL p <- ggplot(dat, aes( x = .data[["group.by"]], y = .data[["value"]], fill = .data[["fill.by"]] )) @@ -4144,7 +4158,6 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp if (isFALSE(individual)) { if (plot_type == "col") { - x_index <- split(dat[["cell"]], dat[["group.by"]]) bg_data <- as.data.frame(t(sapply(x_index, range))) colnames(bg_data) <- c("xmin", "xmax") bg_data[["group.by"]] <- names(x_index) @@ -4205,19 +4218,16 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp } if (plot_type == "col") { p <- p + geom_col() - if (flip) { - p <- p + theme(axis.text.y = element_blank(), axis.ticks.y = element_blank()) - } else { - p <- p + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) - } + text_data <- sapply(x_index, median) + p <- p + scale_x_continuous(breaks = text_data, labels = names(text_data)) if (isFALSE(individual) && isTRUE(nlevels(dat[["group.by"]]) > 1)) { - x_index <- split(dat[["cell"]], dat[["group.by"]]) border_data <- as.data.frame(sapply(x_index, min) - 0.5) colnames(border_data) <- "xintercept" border_data <- border_data[2:nrow(border_data), , drop = FALSE] border_layer <- geom_vline(xintercept = border_data[["xintercept"]], linetype = 2, alpha = 0.5) p <- p + border_layer } + y_min_use <- layer_scales(p)$y$range$range[1] } if (length(comparisons) > 0) { @@ -4226,8 +4236,10 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp if (any(rowSums(table(dat[["group.by"]], dat[["split.by"]]) >= 2) >= 3)) { message("Detected more than 2 groups. Use multiple_method for comparison") method <- multiple_method + method_args <- multiple_method_args } else { method <- pairwise_method + method_args <- pairwise_method_args } p <- p + ggpubr::stat_compare_means( data = dat[dat[["group.by"]] %in% group_use, , drop = FALSE], @@ -4235,12 +4247,11 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp label = sig_label, label.y = y_max_use, size = sig_labelsize, - step.increase = 0.1, - tip.length = 0.03, + step.increase = sig_stepincrease, vjust = 1, - method = method + method = method, + method.args = method_args, ) - y_max_use <- layer_scales(p)$y$range$range[2] } else { p <- p + ggpubr::stat_compare_means( @@ -4248,27 +4259,29 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp label = sig_label, label.y = y_max_use, size = sig_labelsize, - step.increase = 0.1, - tip.length = 0.03, + step.increase = sig_stepincrease, vjust = 0, comparisons = comparisons, ref.group = ref_group, - method = pairwise_method + method = pairwise_method, + method.args = pairwise_method_args, ) - y_max_use <- layer_scales(p)$y$range$range[1] + (layer_scales(p)$y$range$range[2] - layer_scales(p)$y$range$range[1]) * 1.15 + y_max_use <- layer_scales(p)$y$range$range[1] + (layer_scales(p)$y$range$range[2] - layer_scales(p)$y$range$range[1]) * (1 + sig_stepincrease + 0.05) } } if (isTRUE(multiplegroup_comparisons)) { p <- p + ggpubr::stat_compare_means( aes(x = .data[["group.by"]], y = .data[["value"]], group = .data[["group.unique"]]), - method = multiple_method, label = sig_label, label.y = y_max_use, size = sig_labelsize, + step.increase = sig_stepincrease, vjust = 1.2, - hjust = 0 + hjust = 0, + method = multiple_method, + method.args = multiple_method_args ) - y_max_use <- layer_scales(p)$y$range$range[1] + (layer_scales(p)$y$range$range[2] - layer_scales(p)$y$range$range[1]) * 1.15 + y_max_use <- layer_scales(p)$y$range$range[1] + (layer_scales(p)$y$range$range[2] - layer_scales(p)$y$range$range[1]) * (1 + sig_stepincrease + 0.05) } if (isTRUE(add_point)) { @@ -4367,6 +4380,36 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp ) } + if (isTRUE(stack)) { + digits <- max(gregexpr("\\.0+", as.character(y_max_use - y_min_use))[[1]][1], 1) + p <- p + scale_y_continuous( + trans = y.trans, breaks = c(y_min_use, y_max_use), labels = c(round(y_min_use, digits), round(y_max_use, digits)) + ) + } else { + p <- p + scale_y_continuous(trans = y.trans, n.breaks = y.nbreaks) + } + + if (fill.by != "expression") { + if (isTRUE(stack)) { + p <- p + scale_fill_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, limits = levels_order, drop = FALSE) + + scale_color_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, limits = levels_order, drop = FALSE) + } else { + p <- p + scale_fill_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, drop = FALSE) + + scale_color_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, drop = FALSE) + } + p <- p + guides(fill = guide_legend( + title.hjust = 0, + order = 1, + override.aes = list(size = 4, color = "black", alpha = 1) + )) + } else { + p <- p + scale_fill_gradientn( + name = paste0(keynm, ":"), colours = colors, limits = colors_limits + ) + guides( + fill = guide_colorbar(frame.colour = "black", ticks.colour = "black", title.hjust = 0, order = 1) + ) + } + if (nrow(dat) == 0) { p <- p + facet_null() } else { @@ -4377,7 +4420,7 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp } } p <- p + labs(title = title, subtitle = subtitle[f], x = xlab, y = ylab) - if (nrow(dat) != 0) { + if (nrow(dat) != 0 & plot_type != "col") { p <- p + scale_x_discrete(drop = !keep_empty) } @@ -4391,7 +4434,8 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp panel.grid.major.x = element_line(color = "grey", linetype = 2), legend.position = legend.position, legend.direction = legend.direction - ) + coord_flip(ylim = c(y_min_use, y_max_use)) + ) + + coord_flip(ylim = c(y_min_use, y_max_use)) } else { p <- p + do.call(theme_use, theme_args) + theme( @@ -4401,7 +4445,8 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp panel.grid.major.x = element_line(color = "grey", linetype = 2), legend.position = legend.position, legend.direction = legend.direction - ) + coord_flip(ylim = c(y_min_use, y_max_use)) + ) + + coord_flip(ylim = c(y_min_use, y_max_use)) } } else { p <- p + do.call(theme_use, theme_args) + @@ -4412,38 +4457,12 @@ ExpressionStatPlot <- function(exp.data, meta.data, stat.by, group.by = NULL, sp panel.grid.major.y = element_line(color = "grey", linetype = 2), legend.position = legend.position, legend.direction = legend.direction - ) + coord_cartesian(ylim = c(y_min_use, y_max_use)) - } - - if (isTRUE(stack)) { - p <- p + scale_y_continuous( - trans = y.trans, breaks = c(y_min_use, y_max_use), labels = c(round(y_min_use, 1), round(y_max_use, 1)) - ) - } else { - p <- p + scale_y_continuous(trans = y.trans, n.breaks = y.nbreaks) + ) + + coord_cartesian(ylim = c(y_min_use, y_max_use)) } - if (fill.by != "expression") { - if (isTRUE(stack)) { - p <- p + scale_fill_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, limits = levels_order, drop = FALSE) + - scale_color_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, limits = levels_order, drop = FALSE) - } else { - p <- p + scale_fill_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, drop = FALSE) + - scale_color_manual(name = paste0(keynm, ":"), values = colors, breaks = levels_order, drop = FALSE) - } - p <- p + guides(fill = guide_legend( - title.hjust = 0, - order = 1, - override.aes = list(size = 4, color = "black", alpha = 1) - )) - } else { - p <- p + scale_fill_gradientn( - name = paste0(keynm, ":"), colours = colors, limits = colors_limits - ) + guides( - fill = guide_colorbar(frame.colour = "black", ticks.colour = "black", title.hjust = 0, order = 1) - ) - } # plist[[paste0(f, ":", g, ":", paste0(single_group, collapse = ","), ":", paste0(sp, collapse = ","))]] <- p + return(p) }) return(plist) @@ -9363,9 +9382,8 @@ FeatureHeatmap <- function(srt, features = NULL, cells = NULL, group.by = NULL, cell_groups[[cell_group]] <- unlist(lapply(levels(srt@meta.data[[cell_group]]), function(x) { cells_sub <- colnames(srt@assays[[1]])[which(srt@meta.data[[cell_group]] == x)] cells_sub <- intersect(cells, cells_sub) - size <- ifelse(length(cells_sub) > max_cells, max_cells, length(cells_sub)) - cells_sample <- sample(cells_sub, size) - out <- setNames(rep(x, size), cells_sample) + cells_sample <- if (length(cells_sub) > max_cells) sample(cells_sub, max_cells) else cells_sub + out <- setNames(rep(x, length(cells_sample)), cells_sample) return(out) }), use.names = TRUE) levels <- levels(srt@meta.data[[cell_group]]) @@ -9380,9 +9398,8 @@ FeatureHeatmap <- function(srt, features = NULL, cells = NULL, group.by = NULL, cells_tmp <- NULL for (sp in levels(srt@meta.data[[split.by]])) { cells_sp <- cells_sub[srt@meta.data[cells_sub, split.by] == sp] - size <- ifelse(length(cells_sp) > max_cells, max_cells, length(cells_sp)) - cells_sample <- sample(cells_sp, size) - cells_tmp <- c(cells_tmp, setNames(rep(paste0(x, " : ", sp), size), cells_sample)) + cells_sample <- if (length(cells_sp) > max_cells) sample(cells_sp, max_cells) else cells_sp + cells_tmp <- c(cells_tmp, setNames(rep(paste0(x, " : ", sp), length(cells_sample)), cells_sample)) } size <- ifelse(length(cells_tmp) > max_cells, max_cells, length(cells_tmp)) out <- sample(cells_tmp, size) @@ -12874,7 +12891,10 @@ EnrichmentPlot <- function(srt, db = "GO_BP", group_by = NULL, test.use = "wilco } enrichment <- do.call(rbind, enrichment_list) } else { - enrichment <- enrichment[enrichment[["ID"]] %in% unlist(id_use), , drop = FALSE] + id_order <- intersect(unique(unlist(id_use)), enrichment[["ID"]]) + id_match <- match(enrichment[["ID"]], id_order) + id_index <- order(id_match) + enrichment <- enrichment[id_index[seq_len(sum(!is.na(id_match)))], , drop = FALSE] } } @@ -12888,9 +12908,7 @@ EnrichmentPlot <- function(srt, db = "GO_BP", group_by = NULL, test.use = "wilco enrichment_sim <- enrichment[enrichment[["Database"]] %in% gsub("_sim", "", db), , drop = FALSE] } enrichment <- enrichment[enrichment[["Database"]] %in% db, , drop = FALSE] - enrichment_sig <- enrichment[enrichment[[metric]] < metric_value | enrichment[["ID"]] %in% unlist(id_use), , drop = FALSE] - enrichment_sig <- enrichment_sig[order(enrichment_sig[[metric]]), , drop = FALSE] if (nrow(enrichment_sig) == 0) { stop( "No term enriched using the threshold: ", @@ -12910,15 +12928,19 @@ EnrichmentPlot <- function(srt, db = "GO_BP", group_by = NULL, test.use = "wilco if (plot_type == "comparison") { # comparison ------------------------------------------------------------------------------------------------- ids <- NULL - for (i in seq_along(df_list)) { - df <- df_list[[i]] - df_groups <- split(df, list(df$Database, df$Groups)) - df_groups <- lapply(df_groups, function(group) { - filtered_group <- group[head(seq_len(nrow(group)), topTerm), , drop = FALSE] - return(filtered_group) - }) - df <- do.call(rbind, df_groups) - ids <- unique(c(ids, df[, "ID"])) + if (length(id_use) > 0) { + ids <- unique(unlist(id_use)) + } else { + for (i in seq_along(df_list)) { + df <- df_list[[i]] + df_groups <- split(df, list(df$Database, df$Groups)) + df_groups <- lapply(df_groups, function(group) { + filtered_group <- group[head(seq_len(nrow(group)), topTerm), , drop = FALSE] + return(filtered_group) + }) + df <- do.call(rbind, df_groups) + ids <- unique(c(ids, df[, "ID"])) + } } if (any(db %in% c("GO_sim", "GO_BP_sim", "GO_CC_sim", "GO_MF_sim"))) { enrichment_sub <- subset(enrichment_sim, ID %in% ids) diff --git a/man/CellDimPlot.Rd b/man/CellDimPlot.Rd index eb2096f1..7f3a61a7 100644 --- a/man/CellDimPlot.Rd +++ b/man/CellDimPlot.Rd @@ -44,6 +44,11 @@ CellDimPlot( mark_expand = unit(3, "mm"), mark_alpha = 0.1, mark_linetype = 1, + add_rug = FALSE, + rug_alpha = 1, + rug_outside = FALSE, + rug_sides = "bl", + rug_length = unit(0.03, "npc"), lineages = NULL, lineages_trim = c(0.01, 0.99), lineages_span = 0.75, diff --git a/man/FeatureStatPlot.Rd b/man/FeatureStatPlot.Rd index 6fa4fcd9..f090e576 100644 --- a/man/FeatureStatPlot.Rd +++ b/man/FeatureStatPlot.Rd @@ -65,10 +65,13 @@ FeatureStatPlot( comparisons = NULL, ref_group = NULL, pairwise_method = "wilcox.test", + pairwise_method_args = list(), multiplegroup_comparisons = FALSE, multiple_method = "kruskal.test", + multiple_method_args = list(), sig_label = c("p.signif", "p.format"), sig_labelsize = 3.5, + sig_stepincrease = 0.15, aspect.ratio = NULL, title = NULL, subtitle = NULL, diff --git a/man/MergeRows.Rd b/man/MergeRows.Rd index af9d83ea..a7acbda5 100644 --- a/man/MergeRows.Rd +++ b/man/MergeRows.Rd @@ -14,3 +14,34 @@ MergeRows(x, groupings) \description{ MergeRows is a function that sum the values of rows based on specified groupings. } +\examples{ +library(Matrix) +ncells <- 3000 +nfeatures <- 1000 +expressed <- 500 +n <- ncells * expressed +dimnames <- list(paste0("feature", seq_len(nfeatures)), paste0("cell", seq_len(ncells))) + +sparse <- sparseMatrix( + i = sample(seq_len(nfeatures), size = n, replace = TRUE), + j = sample(seq_len(ncells), size = n, replace = TRUE), + x = sample(1:10, size = n, replace = TRUE), + dimnames = dimnames +) +dup_index <- sample(seq_len(nfeatures), size = 50) +rownames(sparse)[dup_index] <- paste0("duplicated", 1:10) +table(rownames(sparse)[dup_index]) + +dense <- matrix( + data = sample(1:10, size = nfeatures * ncells, replace = TRUE), + nrow = nfeatures, ncol = ncells, + dimnames = dimnames +) +dup_index <- sample(seq_len(nfeatures), size = 50) +rownames(dense)[dup_index] <- paste0("duplicated", 1:10) +table(rownames(dense)[dup_index]) + +system.time(MergeRows(dense, rownames(dense))) +system.time(MergeRows(sparse, rownames(sparse))) +system.time(aggregate(dense, by = list(rownames(dense)), FUN = sum)) +}