diff --git a/R/SCP-analysis.R b/R/SCP-analysis.R index 7a9238c1..9cc13f2a 100644 --- a/R/SCP-analysis.R +++ b/R/SCP-analysis.R @@ -67,7 +67,6 @@ #' @importFrom reshape2 dcast melt #' @importFrom biomaRt listEnsemblArchives useMart listDatasets useDataset getBM listAttributes useEnsembl #' @export -#' GeneConvert <- function(geneID, geneID_from_IDtype = "symbol", geneID_to_IDtype = "entrez_id", species_from = "Homo_sapiens", species_to = NULL, Ensembl_version = 103, biomart = NULL, mirror = NULL, max_tries = 5) { @@ -3400,7 +3399,6 @@ PrepareDB <- function(species = c("Homo_sapiens", "Mus_musculus"), #' @importFrom BiocParallel bplapply bpprogressbar<- bpRNGseed<- bpworkers ipcid ipclock ipcunlock #' @importFrom clusterProfiler enricher simplify #' @export -#' RunEnrichment <- function(srt = NULL, group_by = NULL, test.use = "wilcox", DE_threshold = "avg_log2FC > 0 & p_val_adj < 0.05", geneID = NULL, geneID_groups = NULL, geneID_exclude = NULL, IDtype = "symbol", result_IDtype = "symbol", species = "Homo_sapiens", db = "GO_BP", db_update = FALSE, db_version = "latest", db_combine = FALSE, convert_species = TRUE, Ensembl_version = 103, mirror = NULL, @@ -3665,7 +3663,6 @@ RunEnrichment <- function(srt = NULL, group_by = NULL, test.use = "wilcox", DE_t #' @importFrom BiocParallel bplapply bpprogressbar<- bpRNGseed<- bpworkers ipcid ipclock ipcunlock #' @importFrom clusterProfiler GSEA simplify #' @export -#' RunGSEA <- function(srt = NULL, group_by = NULL, test.use = "wilcox", DE_threshold = "p_val_adj < 0.05", scoreType = "std", geneID = NULL, geneScore = NULL, geneID_groups = NULL, geneID_exclude = NULL, IDtype = "symbol", result_IDtype = "symbol", species = "Homo_sapiens", db = "GO_BP", db_update = FALSE, db_version = "latest", db_combine = FALSE, convert_species = TRUE, Ensembl_version = 103, mirror = NULL, @@ -4984,7 +4981,6 @@ py_to_r_auto <- function(x) { #' @importFrom Seurat GetAssayData #' @importFrom Matrix t #' @export -#' srt_to_adata <- function(srt, features = NULL, assay_X = "RNA", slot_X = "counts", assay_layers = c("spliced", "unspliced"), slot_layers = "counts", @@ -5418,7 +5414,6 @@ check_python_element <- function(x, depth = maxDepth(x)) { #' CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "PAGAUMAP2D", paga = pancreas_sub@misc$paga) #' #' @export -#' RunPAGA <- function(srt = NULL, assay_X = "RNA", slot_X = "counts", assay_layers = c("spliced", "unspliced"), slot_layers = "counts", adata = NULL, group_by = NULL, linear_reduction = NULL, nonlinear_reduction = NULL, basis = NULL, @@ -5529,7 +5524,6 @@ RunPAGA <- function(srt = NULL, assay_X = "RNA", slot_X = "counts", assay_layers #' pancreas_sub <- RunSCVELO(srt = pancreas_sub, assay_X = "SCT", group_by = "SubCellType", linear_reduction = "Standardpca", nonlinear_reduction = "StandardTSNE2D") #' #' @export -#' RunSCVELO <- function(srt = NULL, assay_X = "RNA", slot_X = "counts", assay_layers = c("spliced", "unspliced"), slot_layers = "counts", adata = NULL, group_by = NULL, linear_reduction = NULL, nonlinear_reduction = NULL, basis = NULL, @@ -5636,7 +5630,6 @@ RunSCVELO <- function(srt = NULL, assay_X = "RNA", slot_X = "counts", assay_laye #' FeatureDimPlot(pancreas_sub, paste0(c("Alpha", "Beta", "Delta", "Epsilon"), "_diff_potential")) #' #' @export -#' RunPalantir <- function(srt = NULL, assay_X = "RNA", slot_X = "counts", assay_layers = c("spliced", "unspliced"), slot_layers = "counts", adata = NULL, group_by = NULL, linear_reduction = NULL, nonlinear_reduction = NULL, basis = NULL, diff --git a/R/SCP-plot.R b/R/SCP-plot.R index cac409f9..90dca74f 100644 --- a/R/SCP-plot.R +++ b/R/SCP-plot.R @@ -3363,7 +3363,16 @@ FeatureDimPlot3D <- function(srt, features = NULL, reduction = NULL, dims = c(1, #' group.by = "SubCellType", bg.by = "CellType", stack = TRUE, flip = TRUE #' ) %>% panel_fix_overall(width = 8, height = 5) # As the plot is created by combining, we can adjust the overall height and width directly. #' -#' FeatureStatPlot(pancreas_sub, stat.by = c("G2M_score", "Fev"), group.by = "CellType", plot.by = "feature") +#' FeatureStatPlot(pancreas_sub, stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature") +#' FeatureStatPlot(pancreas_sub, +#' stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature", +#' multiplegroup_comparisons = TRUE, sig_label = "p.format", sig_labelsize = 4 +#' ) +#' FeatureStatPlot(pancreas_sub, +#' stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature", +#' comparisons = list(c("Neurog3", "Rbp4"), c("Rbp4", "Ins1")), +#' stack = TRUE +#' ) #' FeatureStatPlot(pancreas_sub, stat.by = c( #' "Sox9", "Anxa2", "Bicc1", # Ductal #' "Neurog3", "Hes6", # EPs @@ -3372,6 +3381,13 @@ FeatureDimPlot3D <- function(srt, features = NULL, reduction = NULL, dims = c(1, #' "Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon #' ), group.by = "SubCellType", plot.by = "feature", stack = TRUE) #' +#' data <- pancreas_sub@assays$RNA@data +#' pancreas_sub@assays$RNA@scale.data <- as.matrix(data / rowMeans(data)) +#' FeatureStatPlot(pancreas_sub, +#' stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", +#' slot = "scale.data", ylab = "FoldChange", same.y.lims = TRUE, y.max = 4 +#' ) +#' #' @importFrom Seurat FetchData #' @importFrom reshape2 melt #' @importFrom gtable gtable_add_cols gtable_add_rows gtable_add_grob gtable_add_padding @@ -3379,7 +3395,7 @@ FeatureDimPlot3D <- function(srt, features = NULL, reduction = NULL, dims = c(1, #' @importFrom patchwork wrap_plots #' @export FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.by = NULL, plot.by = c("group", "feature"), fill.by = c("group", "feature", "expression"), - cells = NULL, slot = c("data", "counts"), assay = NULL, keep_empty = FALSE, individual = FALSE, + cells = NULL, slot = "data", assay = NULL, keep_empty = FALSE, individual = FALSE, plot_type = c("violin", "box", "bar", "dot", "col"), palette = "Paired", palcolor = NULL, alpha = 1, bg_palette = "Paired", bg_palcolor = NULL, bg_alpha = 0.2, @@ -3401,7 +3417,6 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b meta.data <- srt@meta.data meta.data[["cells"]] <- rownames(meta.data) assay <- assay %||% DefaultAssay(srt) - slot <- match.arg(slot) exp.data <- slot(srt@assays[[assay]], slot) plot.by <- match.arg(plot.by) @@ -3409,9 +3424,12 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b if (length(group.by) > 1) { stop("The 'group.by' must have a length of 1 when 'plot.by' is set to 'feature'") } + if (!is.null(bg.by)) { + message("'bg.by' is invalid when plot.by is set to 'feature'") + } message("Setting 'group.by' to 'Features' as 'plot.by' is set to 'feature'") srt@assays[setdiff(names(srt@assays), assay)] <- NULL - meta.reshape <- FetchData(srt, vars = c(stat.by, group.by, split.by, bg.by), cells = cells %||% rownames(meta.data), slot = slot) + meta.reshape <- FetchData(srt, vars = c(stat.by, group.by, split.by), cells = cells %||% rownames(meta.data), slot = slot) meta.reshape[["cells"]] <- rownames(meta.reshape) meta.reshape <- melt(meta.reshape, measure.vars = stat.by, variable.name = "Features", value.name = "Stat.by") rownames(meta.reshape) <- paste0(meta.reshape[["cells"]], "-", meta.reshape[["Features"]]) @@ -3421,7 +3439,7 @@ FeatureStatPlot <- function(srt, stat.by, group.by = NULL, split.by = NULL, bg.b if (length(rownames(meta.reshape)[meta.reshape[[group.by]] == g]) > 0) { meta.reshape[[g]] <- meta.reshape[["Stat.by"]] p <- ExpressionStatPlot( - exp.data = exp.data, meta.data = meta.reshape, stat.by = g, group.by = "Features", split.by = split.by, bg.by = bg.by, plot.by = "group", fill.by = fill.by, + exp.data = exp.data, meta.data = meta.reshape, stat.by = g, group.by = "Features", split.by = split.by, bg.by = NULL, plot.by = "group", fill.by = fill.by, cells = rownames(meta.reshape)[meta.reshape[[group.by]] == g], keep_empty = keep_empty, individual = individual, plot_type = plot_type, palette = palette, palcolor = palcolor, alpha = alpha, diff --git a/man/FeatureStatPlot.Rd b/man/FeatureStatPlot.Rd index ebc6e03a..be184270 100644 --- a/man/FeatureStatPlot.Rd +++ b/man/FeatureStatPlot.Rd @@ -13,7 +13,7 @@ FeatureStatPlot( plot.by = c("group", "feature"), fill.by = c("group", "feature", "expression"), cells = NULL, - slot = c("data", "counts"), + slot = "data", assay = NULL, keep_empty = FALSE, individual = FALSE, @@ -263,7 +263,16 @@ FeatureStatPlot(pancreas_sub, group.by = "SubCellType", bg.by = "CellType", stack = TRUE, flip = TRUE ) \%>\% panel_fix_overall(width = 8, height = 5) # As the plot is created by combining, we can adjust the overall height and width directly. -FeatureStatPlot(pancreas_sub, stat.by = c("G2M_score", "Fev"), group.by = "CellType", plot.by = "feature") +FeatureStatPlot(pancreas_sub, stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature") +FeatureStatPlot(pancreas_sub, + stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature", + multiplegroup_comparisons = TRUE, sig_label = "p.format", sig_labelsize = 4 +) +FeatureStatPlot(pancreas_sub, + stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", plot.by = "feature", + comparisons = list(c("Neurog3", "Rbp4"), c("Rbp4", "Ins1")), + stack = TRUE +) FeatureStatPlot(pancreas_sub, stat.by = c( "Sox9", "Anxa2", "Bicc1", # Ductal "Neurog3", "Hes6", # EPs @@ -272,4 +281,11 @@ FeatureStatPlot(pancreas_sub, stat.by = c( "Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon ), group.by = "SubCellType", plot.by = "feature", stack = TRUE) +data <- pancreas_sub@assays$RNA@data +pancreas_sub@assays$RNA@scale.data <- as.matrix(data / rowMeans(data)) +FeatureStatPlot(pancreas_sub, + stat.by = c("Neurog3", "Rbp4", "Ins1"), group.by = "CellType", + slot = "scale.data", ylab = "FoldChange", same.y.lims = TRUE, y.max = 4 +) + }