forked from PaddlePaddle/Paddle3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoke_dla34_no_dcn_kitti_amp.yml
75 lines (67 loc) · 1.61 KB
/
smoke_dla34_no_dcn_kitti_amp.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
_base_: '../_base_/kitti_mono.yml'
batch_size: 8
iters: 70000
amp_cfg:
use_amp: True
enable: True
level: O1
scaler:
init_loss_scaling: 1024.0
custom_black_list: ['matmul_v2', 'elementwise_mul']
train_dataset:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
- type: Gt2SmokeTarget
mode: train
num_classes: 3
input_size: [1280, 384]
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
- type: Gt2SmokeTarget
mode: val
num_classes: 3
input_size: [1280, 384]
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
type: Adam
lr_scheduler:
type: MultiStepDecay
milestones: [36000, 55000]
learning_rate: 1.25e-4
model:
type: SMOKE
backbone:
type: DLA34
# This will automatically save to ~/.paddle3d/pretrained/dla34/dla34.pdparams
pretrained: "https://bj.bcebos.com/paddle3d/pretrained/dla34.pdparams"
head:
type: SMOKEPredictor
num_classes: 3
reg_channels: [1, 2, 3, 2, 2]
num_channels: 256
norm_type: "gn"
in_channels: 64
depth_ref: [28.01, 16.32]
# dim_ref is the reference size mentioned in the paper, the order here is [l, h, w]
dim_ref: [[3.88, 1.63, 1.53], [1.78, 1.70, 0.58], [0.88, 1.73, 0.67]]
max_detection: 50
pred_2d: True
export:
transforms:
- type: LoadImage
reader: pillow
to_chw: False
to_rgb: True
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]