-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquality_control.py
246 lines (221 loc) · 11.3 KB
/
quality_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import json
import os
import argparse
from tqdm import tqdm
import torch
from transformers import pipeline, AutoModel, AutoTokenizer
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
from sklearn.model_selection import train_test_split
import random
import pyarrow as pa
from nltk.tokenize import sent_tokenize
import nltk
import glob
def truncate_incomplete_sentence(evidence):
"""
Truncate incomplete sentences from the evidence text.
:param evidence: str, the evidence text
:return: str, the truncated evidence text
"""
sentences = sent_tokenize(evidence)
complete_sentences = sentences[:-1] if len(sentences) > 1 else sentences
return ' '.join(complete_sentences)
def read_arrow_to_df_julia_ok(path):
"""
Read a PyArrow file and convert it to a Pandas DataFrame.
:param path: str, path to the PyArrow file
:return: DataFrame, the resulting DataFrame
"""
with open(path, "rb") as f:
r = pa.ipc.RecordBatchStreamReader(f)
df = r.read_pandas()
return df
class NLI_classifier(nn.Module):
"""
Neural Network for Natural Language Inference (NLI) classification.
"""
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(768, 512)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(512, 3)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
def mean_pooling(model_output, attention_mask):
"""
Mean pooling function to aggregate token embeddings.
:param model_output: tensor, model output
:param attention_mask: tensor, attention mask
:return: tensor, aggregated embeddings
"""
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def embedding(tokenizer, embedding_model, sentences):
"""
Generate embeddings for sentences using a pre-trained model.
:param tokenizer: tokenizer, the tokenizer
:param embedding_model: model, the embedding model
:param sentences: list, list of sentences
:return: tensor, the concatenated vector
"""
encoded_input = tokenizer(sentences, padding="max_length", truncation=True, return_tensors='pt', max_length=512).to('cuda')
model_output = embedding_model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
u = sentence_embeddings[0]
sss = sentence_embeddings[1]
difference = torch.abs(u - sss)
concatenated_vector = difference
return concatenated_vector
def nli_classifier(classifier_model, concatenated_vector):
"""
Classify the NLI task using the classifier model.
:param classifier_model: model, the classifier model
:param concatenated_vector: tensor, the input vector
:return: int, the predicted class
"""
out = classifier_model(concatenated_vector)
_, predicted_class = torch.max(out, 0)
return predicted_class
def main(raw_file, nli_model, embedding_model, classifier_model, selected_raw_data_path, question_template_path, output_path, relation_to_object, qid_names, batch_size):
"""
Main function to process raw data and generate conflict data.
"""
# Initialize the text classification pipeline
pipe = pipeline("text-classification", model=nli_model, device=0, batch_size=batch_size)
# Read raw data
raw_datas = []
with open(raw_file, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
raw_datas.append(data)
selected_data = []
for i in tqdm(range(0, len(raw_datas), batch_size)):
correct_result = pipe([{'text': raw_datas[j]['correct_pair'], 'text_pair': raw_datas[j]['correct_evidence']} for j in range(i, min(len(raw_datas), i + batch_size))], padding=True)
misinformation, temporal, semantic = [], [], []
misinformation_cnt, temporal_cnt, semantic_cnt = {}, {}, {}
misinformation_ind, temporal_ind, semantic_ind = 0, 0, 0
for j in range(i, min(len(raw_datas), i + batch_size)):
data = raw_datas[j]
if not (len(data['fact_conflict_evidence']) < 50 or 'I apologize' in data['fact_conflict_evidence'] or 'I cannot' in data['fact_conflict_evidence']):
misinformation.append({'text': data['fact_conflict_evidence'], 'text_pair': data['fact_conflict_evidence']})
misinformation_cnt[data['fact_conflict_evidence']] = misinformation_ind
misinformation_ind += 1
if not (len(data['temporal_conflict_evidence']) < 50 or 'I apologize' in data['temporal_conflict_evidence'] or 'I cannot' in data['temporal_conflict_evidence']):
temporal.append({'text': data['temporal_conflict_evidence'], 'text_pair': data['temporal_conflict_evidence']})
temporal_cnt[data['temporal_conflict_evidence']] = temporal_ind
temporal_ind += 1
if not (len(data['semantic_conflict_evidence']) < 50 or 'I apologize' in data['semantic_conflict_evidence'] or 'I cannot' in data['semantic_conflict_evidence']):
semantic.append({'text': data['semantic_conflict_evidence'], 'text_pair': data['semantic_conflict_evidence']})
semantic_cnt[data['semantic_conflict_evidence']] = semantic_ind
semantic_ind += 1
misinformation_result = pipe(misinformation, padding=True)
temporal_result = pipe(temporal, padding=True)
semantic_result = pipe(semantic, padding=True)
for j in range(i, min(len(raw_datas), i + batch_size)):
data = raw_datas[j]
if correct_result[j - i]['label'] != 'entailment':
continue
if data["fact_conflict_evidence"] not in misinformation_cnt or misinformation_result[misinformation_cnt[data['fact_conflict_evidence']]]['label'] != 'entailment':
continue
if data["temporal_conflict_evidence"] not in temporal_cnt or temporal_result[temporal_cnt[data['temporal_conflict_evidence']]]['label'] != 'entailment':
continue
if data["semantic_conflict_evidence"] not in semantic_cnt or semantic_result[semantic_cnt[data['semantic_conflict_evidence']]]['label'] != 'entailment':
continue
selected_data.append(data)
with open('nli_result.json', 'w', encoding='utf-8') as f:
for data in selected_data:
json_data = json.dumps(data)
f.write(json_data + '\n')
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
embedding_model = AutoModel.from_pretrained(embedding_model).to('cuda')
classifier_model = torch.load(classifier_model, map_location='cuda:0')
classifier_model.eval()
with open(selected_raw_data_path, 'w', encoding='utf-8') as f:
for data in tqdm(selected_data):
flag = True
for conflict_type in ['fact_conflict_evidence', 'temporal_conflict_evidence', 'semantic_conflict_evidence']:
if conflict_type in data:
sentences = [data['correct_evidence'], data[conflict_type]]
sentences_vector = embedding(tokenizer, embedding_model, sentences)
clas = nli_classifier(classifier_model, sentences_vector)
if clas != 2:
flag = False
break
if flag:
json_data = json.dumps(data)
f.write(json_data + '\n')
selected_data = []
with open(selected_raw_data_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
selected_data.append(data)
question_templates = {}
with open(question_template_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
question_templates[data['relation_id']] = data['question_template']
all_data = []
for data in selected_data:
question_template = question_templates[data['relation']]
if '<subject>' not in question_template or '<object>' in question_template:
continue
question = question_template.replace('<subject>', data['subject'])
data['question'] = question
all_data.append(data)
relation_to_object_dict = {}
with open(relation_to_object, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
relation_to_object_dict[data['key']] = data['value']
id_to_name = {}
with open(qid_names, "r") as file:
lines = file.readlines()
for line in tqdm(lines):
items = line.strip().split()
if 'Q' not in items[0]:
continue
id_to_name[items[0]] = ' '.join(items[1:])
with open(output_path, 'w', encoding='utf-8') as f:
for data in tqdm(all_data):
relation = data['relation']
options = [data['object'], data['replaced_object']]
cnt = 5000
while cnt > 0 and len(options) < 4:
add_object = random.sample(relation_to_object_dict[relation], 1)[0]
if id_to_name[add_object] not in options:
options.append(id_to_name[add_object])
cnt -= 1
if cnt == 0:
continue
random.shuffle(options)
to_options = ['A', 'B', 'C', 'D']
correct_ind = options.index(data['object'])
replaced_ind = options.index(data['replaced_object'])
correct_option = to_options[correct_ind]
replaced_option = to_options[replaced_ind]
data['options'] = options
data['correct_option'] = correct_option
data['replaced_option'] = replaced_option
json_data = json.dumps(data)
f.write(json_data + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process raw data and generate conflict data.")
parser.add_argument('--raw_file', required=True, help="Path to the raw data file.")
parser.add_argument('--nli_model', required=True, help="Path to the NLI model.")
parser.add_argument('--embedding_model', required=True, help="Path to the embedding model.")
parser.add_argument('--classifier_model', required=True, help="Path to the classifier model.")
parser.add_argument('--selected_raw_data_path', required=True, help="Path to the selected raw data output file.")
parser.add_argument('--question_template_path', required=True, help="Path to the question template file.")
parser.add_argument('--output_path', required=True, help="Path to the final output file.")
parser.add_argument('--relation_to_object', required=True, help="Path to the relation to object file.")
parser.add_argument('--qid_names', required=True, help="Path to the QID names file.")
parser.add_argument('--batch_size', type=int, required=True, help="Batch size for processing.")
args = parser.parse_args()
main(args.raw_file, args.nli_model, args.embedding_model, args.classifier_model, args.selected_raw_data_path, args.question_template_path, args.output_path, args.relation_to_object, args.qid_names, args.batch_size)