forked from etotheipi/CUDA-Image-Processing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudaConvUtilities.cu
468 lines (400 loc) · 14.6 KB
/
cudaConvUtilities.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
using namespace std;
#include <stdio.h>
#include <vector>
#include <iostream>
#include <fstream>
#include "cudaConvUtilities.h.cu"
using namespace std;
unsigned int cpuTimerVariable;
cudaEvent_t eventTimerStart;
cudaEvent_t eventTimerStop;
// Assume target memory has already been allocated, nPixels is odd
void createGaussian1D(float* targPtr,
int nPixels,
float sigma,
float ctr)
{
if(nPixels%2 != 1)
{
cout << "***Warning: createGaussian(...) only defined for odd pixel" << endl;
cout << " dimensions. Undefined behavior for even sizes." << endl;
}
float pxCtr = (float)(nPixels/2 + ctr);
float sigmaSq = sigma*sigma;
float denom = sqrt(2*M_PI*sigmaSq);
float dist;
for(int i=0; i<nPixels; i++)
{
dist = (float)i - pxCtr;
targPtr[i] = exp(-0.5 * dist * dist / sigmaSq) / denom;
}
}
// Assume target memory has already been allocate, nPixels is odd
// Use Row-Col (D00_UL_ES)
void createGaussian2D(float* targPtr,
int nPixelsRow,
int nPixelsCol,
float sigmaRow,
float sigmaCol,
float ctrRow,
float ctrCol)
{
if(nPixelsRow%2 != 1 || nPixelsCol != 1)
{
cout << "***Warning: createGaussian(...) only defined for odd pixel" << endl;
cout << " dimensions. Undefined behavior for even sizes." << endl;
}
float pxCtrRow = (float)(nPixelsRow/2 + ctrRow);
float pxCtrCol = (float)(nPixelsCol/2 + ctrCol);
float distRow, distCol, distRowSqNorm, distColSqNorm;
float denom = 2*M_PI*sigmaRow*sigmaCol;
for(int r=0; r<nPixelsRow; r++)
{
distRow = (float)r - pxCtrRow;
distRowSqNorm = distRow*distRow / (sigmaRow*sigmaRow);
for(int c=0; c<nPixelsCol; c++)
{
distCol = (float)c - pxCtrCol;
distColSqNorm = distCol*distCol / (sigmaCol*sigmaCol);
targPtr[r*nPixelsCol+c] = exp(-0.5*(distRowSqNorm + distColSqNorm)) / denom;
}
}
}
// Assume diameter^2 target memory has already been allocated
// This filter is used for edge detection. Convolve with the
// kernel created by this function, and then look for the
// zero-crossings
// As always, we expect an odd diameter
// For LoG kernels, we always assume square and symmetric,
// which is why there are no options for different dimensions
void createLaplacianOfGaussianKernel(float* targPtr,
int diameter)
{
float pxCtr = (float)(diameter-1) / 2.0f;
float dc, dr, dcSq, drSq;
float sigma = diameter/10.0f;
float sigmaSq = sigma*sigma;
for(int r=0; r<diameter; r++)
{
dr = (float)r - pxCtr;
drSq = dr*dr;
for(int c=0; c<diameter; c++)
{
dc = (float)c - pxCtr;
dcSq = dc*dc;
float firstTerm = (drSq + dcSq - 2*sigmaSq) / (sigmaSq * sigmaSq);
float secondTerm = exp(-0.5 * (drSq + dcSq) / sigmaSq);
targPtr[r*diameter+c] = firstTerm * secondTerm;
}
}
}
// Assume diameter^2 target memory has already been allocated
int createBinaryCircle(int* targPtr,
int diameter)
{
float pxCtr = (float)(diameter-1) / 2.0f;
float rad;
int seNonZero = 0;
for(int r=0; r<diameter; r++)
{
for(int c=0; c<diameter; c++)
{
rad = sqrt((r-pxCtr)*(r-pxCtr) + (c-pxCtr)*(c-pxCtr));
if(rad <= pxCtr+0.5)
{
targPtr[r*diameter+c] = 1;
seNonZero++;
}
else
{
targPtr[r*diameter+c] = 0;
}
}
}
return seNonZero;
}
// Assume diameter^2 target memory has already been allocated
cudaImageHost<int> createBinaryCircle(int diameter)
{
cudaImageHost<int> out(diameter, diameter);
float pxCtr = (float)(diameter-1) / 2.0f;
float rad;
for(int r=0; r<diameter; r++)
{
for(int c=0; c<diameter; c++)
{
rad = sqrt((r-pxCtr)*(r-pxCtr) + (c-pxCtr)*(c-pxCtr));
if(rad <= pxCtr+0.5)
out(r,c) = 1.0f;
else
out(r,c) = 0.0f;
}
}
return out;
}
////////////////////////////////////////////////////////////////////////////////
// Simple Timing Calls
void cpuStartTimer(void)
{
// GPU Timer Functions
cpuTimerVariable = 0;
cutCreateTimer( &cpuTimerVariable );
cutStartTimer( cpuTimerVariable );
}
////////////////////////////////////////////////////////////////////////////////
// Stopping also resets the timer
// returns milliseconds
float cpuStopTimer(void)
{
cutStopTimer( cpuTimerVariable );
float cpuTime = cutGetTimerValue(cpuTimerVariable);
cutDeleteTimer( cpuTimerVariable );
return cpuTime;
}
////////////////////////////////////////////////////////////////////////////////
// Timing Calls for GPU -- this only counts GPU clock cycles, which will be
// more precise for measuring GFLOPS and xfer rates, but shorter than wall time
void gpuStartTimer(void)
{
cudaEventCreate(&eventTimerStart);
cudaEventCreate(&eventTimerStop);
cudaEventRecord(eventTimerStart);
}
////////////////////////////////////////////////////////////////////////////////
// Stopping also resets the timer
float gpuStopTimer(void)
{
cudaEventRecord(eventTimerStop);
cudaEventSynchronize(eventTimerStop);
float gpuTime;
cudaEventElapsedTime(&gpuTime, eventTimerStart, eventTimerStop);
return gpuTime;
}
////////////////////////////////////////////////////////////////////////////////
// Read/Write images from/to files
void ReadFile(string fn, int* targPtr, int nRows, int nCols)
{
ifstream in(fn.c_str(), ios::in);
// We work with Row-Col format, but files written in Col-Row, so switch loop
for(int r=0; r<nRows; r++)
for(int c=0; c<nCols; c++)
in >> targPtr[r*nRows+c];
in.close();
}
////////////////////////////////////////////////////////////////////////////////
// Writing file in space-separated format
void WriteFile(string fn, int* srcPtr, int nRows, int nCols)
{
ofstream out(fn.c_str(), ios::out);
// We work with Row-Col format, but files written in Col-Row, so switch loop
for(int r=0; r<nRows; r++)
{
for(int c=0; c<nCols; c++)
{
out << srcPtr[r*nCols+c] << " ";
}
out << endl;
}
out.close();
}
////////////////////////////////////////////////////////////////////////////////
// Writing image to stdout
void PrintArray(int* srcPtr, int nRows, int nCols)
{
// We work with Row-Col format, but files written in Col-Row, so switch loop
for(int r=0; r<nRows; r++)
{
cout << "\t";
for(int c=0; c<nCols; c++)
{
cout << srcPtr[r*nCols+c] << " ";
}
cout << endl;
}
}
////////////////////////////////////////////////////////////////////////////////
// Copy a 3D texture from a host (float*) array to a device cudaArray
// The extent should be specified with all dimensions in units of *elements*
void prepareCudaTexture(float* h_src,
cudaArray *d_dst,
cudaExtent const texExtent)
{
cudaMemcpy3DParms copyParams = {0};
cudaPitchedPtr cppImgPsf = make_cudaPitchedPtr( (void*)h_src,
texExtent.width*FLOAT_SZ,
texExtent.width,
texExtent.height);
copyParams.srcPtr = cppImgPsf;
copyParams.dstArray = d_dst;
copyParams.extent = texExtent;
copyParams.kind = cudaMemcpyHostToDevice;
cutilSafeCall( cudaMemcpy3D(©Params) );
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BASIC UNARY & BINARY *MASK* OPERATORS
//
// Could create LUTs, but I'm not sure the extra implementation complexity
// actually provides much benefit. These ops already run on the order of
// microseconds.
//
// NOTE: These operators are for images with {0,1}, only the MORPHOLOGICAL
// operators will operate with {-1,0,1}
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
__global__ void Mask_Union_Kernel( int* A, int* B, int* devOut)
{
const int idx = blockDim.x*blockIdx.x + threadIdx.x;
if( A[idx] + B[idx] > 0)
devOut[idx] = 1;
else
devOut[idx] = 0;
}
////////////////////////////////////////////////////////////////////////////////
__global__ void Mask_Intersect_Kernel( int* A, int* B, int* devOut)
{
const int idx = blockDim.x*blockIdx.x + threadIdx.x;
devOut[idx] = A[idx] * B[idx];
}
////////////////////////////////////////////////////////////////////////////////
// (A - B): A is set to 0 if B is 1, otherwise A is left alone
__global__ void Mask_Subtract_Kernel( int* A, int* B, int* devOut)
{
const int idx = blockDim.x*blockIdx.x + threadIdx.x;
if( B[idx] == 0)
devOut[idx] = A[idx];
else
devOut[idx] = 0;
}
////////////////////////////////////////////////////////////////////////////////
// (A - B): A is set to 0 if B is 1, otherwise A is left alone
__global__ void Mask_Difference_Kernel( int* A, int* B, int* devOut)
{
const int idx = blockDim.x*blockIdx.x + threadIdx.x;
if(A[idx] == B[idx])
devOut[idx] = 0;
else
devOut[idx] = 1;
// Should test if the extra algebra ops are worth removing the if-statement
// Convert to {-1, +1}
//int aval = A[idx]*2 - 1;
//int bval = B[idx]*2 - 1;
//devOut[idx] = (aval*bval+1)/2;
}
////////////////////////////////////////////////////////////////////////////////
__global__ void Mask_Invert_Kernel( int* A, int* devOut)
{
const int idx = blockDim.x*blockIdx.x + threadIdx.x;
devOut[idx] = 1 - A[idx];
}
////////////////////////////////////////////////////////////////////////////////
// TODO: This is a very dumb/slow equal operator, actually won't even work
// Perhaps have the threads atomicAdd to a globalMem location if !=
//__global__ void Mask_CountDiff_Kernel( int* A, int* B, int* globalMemCount)
//{
//const int idx = blockDim.x*blockIdx.x + threadIdx.x;
//if(A[idx] != B[idx])
//atomicAdd(numNotEqual, 1);
//}
////////////////////////////////////////////////////////////////////////////////
// TODO: Need to use reduction for this, but that can be kind of complicated
// This operation destroys the input data, and the final result will be
// stored in A[0]
__global__ void Mask_Sum_Kernel( int* A, int valCount, int* scalarOut)
{
const int localIdx = threadIdx.x;
const int globalIdx = blockDim.x*blockIdx.x + threadIdx.x;
const int blockIdxOut = blockIdx.x / blockDim.x;
while(valCount > 1)
{
int localCount = blockDim.x;
while(localCount > 1)
{
localCount = localCount / 2;
if(localIdx < localCount)
A[globalIdx] += A[globalIdx + localCount];
}
if(localIdx == 0)
A[blockIdxOut] = A[globalIdx];
valCount = valCount / blockDim.x;
}
if(globalIdx==0)
scalarOut[0] = A[0];
}
////////////////////////////////////////////////////////////////////////////////
//
// This function takes an array of size N, and returns an array of size N/512
// that has the same sum as the original. This method will need to be called
// recursively until the final size is one element that can be passed back to
// the host.
//
// This kernel is not scalable. I just assume that the block size will be
// (256,1,1), so make sure you call it with that. I did this to improve
// simplicity and speed slightly, at the expense of scalability
__global__ void Image_SumReduceStep_Kernel( int* devBufIn,
int* devBufOut,
int lastBlockSize)
{
// ONLY USE THIS FUNCTION WITH BLOCK SIZE = (256,1,1);
// We write it for that to
__shared__ char sharedMem[4096];
int* shmBuf1 = (int*)sharedMem;
int* shmBuf2 = (int*)&sharedMem[512];
int globalIdx = 512 * blockIdx.x + threadIdx.x;
int localIdx = threadIdx.x;
shmBuf1[localIdx] = 0;
shmBuf1[localIdx+256] = 0;
shmBuf2[localIdx] = 0;
shmBuf2[localIdx+256] = 0;
if(blockIdx.x == gridDim.x-1)
{
if(localIdx+256 >= lastBlockSize) devBufIn[globalIdx+256] = 0;
if(localIdx >= lastBlockSize) devBufIn[globalIdx] = 0;
}
// Now we reduce each block of 512 values (256 threads) to a single number
shmBuf1[localIdx] = devBufIn[globalIdx] + devBufIn[globalIdx + 256]; __syncthreads();
if(localIdx < 128) shmBuf2[localIdx] = shmBuf1[localIdx]+shmBuf1[localIdx+128]; __syncthreads();
if(localIdx < 64) shmBuf1[localIdx] = shmBuf2[localIdx]+shmBuf2[localIdx+64]; __syncthreads();
if(localIdx < 32) shmBuf2[localIdx] = shmBuf1[localIdx]+shmBuf1[localIdx+32]; __syncthreads();
if(localIdx < 16) shmBuf1[localIdx] = shmBuf2[localIdx]+shmBuf2[localIdx+16]; __syncthreads();
if(localIdx < 8) shmBuf2[localIdx] = shmBuf1[localIdx]+shmBuf1[localIdx+8]; __syncthreads();
if(localIdx < 4) shmBuf1[localIdx] = shmBuf2[localIdx]+shmBuf2[localIdx+4]; __syncthreads();
if(localIdx < 2) shmBuf2[localIdx] = shmBuf1[localIdx]+shmBuf1[localIdx+2]; __syncthreads();
// 2 -> 1
if(localIdx < 1)
devBufOut[blockIdx.x] = shmBuf2[localIdx] + shmBuf2[localIdx + 1];
__syncthreads();
}
// Yes, you really do need to pass in 2 full-sized, EXTRA, buffers
int Image_Sum(int* devImgToSum, int* devTemp1, int* devTemp2, int arraySize)
{
// Yes, it seems silly to use two temp buffers to sum up an image, but
// my goal was to make the reduction-kernel simple with the log(n) order of
// gColth, but not necessarily space-efficient
cudaMemcpy(devTemp1, devImgToSum, arraySize*sizeof(int), cudaMemcpyDeviceToDevice);
int* buf1 = devTemp1;
int* buf2 = devTemp2;
int* bufTemp;
// The reduction kernel geometry is hardcoded b/c I wanted the code to be
// simple, not necessarily scalable
dim3 BLOCK(256,1,1);
int nEltsLeft = arraySize;
while(nEltsLeft > 1)
{
int nBlocks = (nEltsLeft-1)/512+1;
int lastBlockSize = ((nEltsLeft - (nBlocks-1)*512 ) - 1) % 512 + 1;
dim3 GRID(nBlocks, 1, 1);
Image_SumReduceStep_Kernel<<<GRID,BLOCK>>>(buf1, buf2, lastBlockSize);
bufTemp = buf1;
buf1 = buf2;
buf2 = bufTemp;
nEltsLeft = nBlocks;
cudaThreadSynchronize();
}
// Seems silly to do a memcpy like this to get one number out of the device
// but I'm not aware of any other way (there probably is)
int output;
cudaMemcpy(&output, buf1, sizeof(int), cudaMemcpyDeviceToHost);
return output;
}