-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathtest.py
155 lines (123 loc) · 5.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# ------------------------------------------------------------------------------
# Copyright (c) Zhichao Zhao
# Licensed under the MIT License.
# Created by Zhichao zhao([email protected])
# ------------------------------------------------------------------------------
import argparse
import time
import os
import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy.integrate import simps
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from dataset.datasets import PFLDDatasets
# from models.mobilev3_pfld import PFLDInference
cudnn.benchmark = True
cudnn.determinstic = True
cudnn.enabled = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def compute_nme(preds, target):
""" preds/target:: numpy array, shape is (N, L, 2)
N: batchsize L: num of landmark
"""
N = preds.shape[0]
L = preds.shape[1]
rmse = np.zeros(N)
for i in range(N):
pts_pred, pts_gt = preds[i, ], target[i, ]
if L == 19: # aflw
interocular = 34 # meta['box_size'][i]
elif L == 29: # cofw
interocular = np.linalg.norm(pts_gt[8, ] - pts_gt[9, ])
elif L == 68: # 300w
# interocular
interocular = np.linalg.norm(pts_gt[36, ] - pts_gt[45, ])
elif L == 98:
interocular = np.linalg.norm(pts_gt[60, ] - pts_gt[72, ])
elif L == 106:
interocular = np.linalg.norm(pts_gt[35, ] - pts_gt[93, ]) # 左眼角和右眼角的欧式距离
else:
raise ValueError('Number of landmarks is wrong')
rmse[i] = np.sum(np.linalg.norm(pts_pred - pts_gt, axis=1)) / interocular
return rmse
def compute_auc(errors, failureThreshold, step=0.0001, showCurve=False):
nErrors = len(errors)
xAxis = list(np.arange(0., failureThreshold + step, step))
ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis]
AUC = simps(ced, x=xAxis) / failureThreshold
failureRate = 1. - ced[-1]
if showCurve:
plt.plot(xAxis, ced)
plt.show()
return AUC, failureRate
def validate(wlfw_val_dataloader, plfd_backbone):
plfd_backbone.eval()
nme_list = []
cost_time = []
with torch.no_grad():
for img, landmark_gt, _ in wlfw_val_dataloader:
img = img.to(device)
landmark_gt = landmark_gt.to(device)
plfd_backbone = plfd_backbone.to(device)
start_time = time.time()
_, landmarks = plfd_backbone(img)
cost_time.append(time.time() - start_time)
landmarks = landmarks.cpu().numpy()
landmarks = landmarks.reshape(landmarks.shape[0], -1, 2) # landmark
landmark_gt = landmark_gt.reshape(landmark_gt.shape[0], -1, 2).cpu().numpy() # landmark_gt
if args.show_image:
show_img = np.array(np.transpose(img[0].cpu().numpy(), (1, 2, 0)))
show_img = (show_img * 255).astype(np.uint8)
np.clip(show_img, 0, 255)
pre_landmark = landmarks[0] * [112, 112]
cv2.imwrite("xxx.jpg", show_img)
img_clone = cv2.imread("xxx.jpg")
for (x, y) in pre_landmark.astype(np.int32):
cv2.circle(img_clone, (x, y), 1, (255, 0, 0),-1)
cv2.imshow("xx.jpg", img_clone)
cv2.waitKey(0)
nme_temp = compute_nme(landmarks, landmark_gt)
for item in nme_temp:
nme_list.append(item)
# nme
print('nme: {:.4f}'.format(np.mean(nme_list)))
# auc and failure rate
failureThreshold = 0.1
auc, failure_rate = compute_auc(nme_list, failureThreshold, False)
print('auc @ {:.1f} failureThreshold: {:.4f}'.format(failureThreshold, auc))
print('failure_rate: {:}'.format(failure_rate))
# inference time
print("inference_cost_time: {0:4f}".format(np.mean(cost_time)))
def main(args):
if args.backbone == "v2":
from models.pfld import PFLDInference, AuxiliaryNet
elif args.backbone == "v3":
from models.mobilev3_pfld import PFLDInference, AuxiliaryNet
elif args.backbone == "ghost":
from models.ghost_pfld import PFLDInference, AuxiliaryNet
elif args.backbone == "lite":
from models.lite import PFLDInference, AuxiliaryNet
else:
raise ValueError("backbone is not implemented")
checkpoint = torch.load(args.model_path, map_location=device)
plfd_backbone = PFLDInference().to(device)
plfd_backbone.load_state_dict(checkpoint['plfd_backbone'], strict=False)
transform = transforms.Compose([transforms.ToTensor()])
wlfw_val_dataset = PFLDDatasets(args.test_dataset, transform, img_root=os.path.realpath('./data'))
wlfw_val_dataloader = DataLoader(wlfw_val_dataset, batch_size=1, shuffle=False, num_workers=0)
validate(wlfw_val_dataloader, plfd_backbone)
def parse_args():
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument('--backbone', default='v2', type=str, choices=["v2", "v3", "lite", "ghost"])
parser.add_argument('--model_path', default="", type=str)
parser.add_argument('--test_dataset', default='./data/test_data/list.txt', type=str)
parser.add_argument('--show_image', default=False, type=bool)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)