-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrainer.py
227 lines (191 loc) · 9.71 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
from collections import OrderedDict
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import torchvision
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from model2 import SeGMVAE
from data2 import Data
class Trainer(object):
def __init__(self, args):
self.args = args
self.data = Data(args.data_dir)
dataset = TensorDataset(torch.from_numpy(self.data.x_mtr).float())
sampler = RandomSampler(dataset, replacement=True)
self.trloader = DataLoader(
dataset=dataset,
batch_size=args.batch_size*args.sample_size,
sampler=sampler,
drop_last=True
)
self.input_shape = [1024]
self.model = SeGMVAE(
input_shape=self.input_shape,
unsupervised_em_iters=args.unsupervised_em_iters,
semisupervised_em_iters=args.semisupervised_em_iters,
fix_pi=args.fix_pi,
hidden_size=args.hidden_size,
component_size=args.way,
latent_size=args.latent_size,
train_mc_sample_size=args.train_mc_sample_size,
test_mc_sample_size=args.test_mc_sample_size
).to(self.args.device)
self.optimizer = torch.optim.Adam(
self.model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay
)
self.writer = SummaryWriter(
log_dir=os.path.join('D:\SeGMVAE-main\数据\西储', "tb_log")
)
def train(self):
global_epoch = 0
global_step = 0
best_1shot = 0.0
best_5shot = 0.0
iterator = iter(self.trloader)
while (global_epoch * self.args.freq_iters < self.args.train_iters):
with tqdm(total=self.args.freq_iters) as pbar:
for _ in range(self.args.freq_iters):
self.model.train()
self.model.zero_grad()
try:
X = next(iterator)[0]
except StopIteration:
iterator = iter(self.trloader)
X = next(iterator)[0]
X = X.to(self.args.device).float()
X = X.view(self.args.batch_size, self.args.sample_size, *self.input_shape)
print(X.size())
rec_loss, kl_loss = self.model(X)
loss = rec_loss + kl_loss
loss.backward()
self.optimizer.step()
postfix = OrderedDict(
{'rec': '{0:.4f}'.format(rec_loss),
'kld': '{0:.4f}'.format(kl_loss)
}
)
pbar.set_postfix(**postfix)
self.writer.add_scalars(
'train',
{'rec': rec_loss, 'kld': kl_loss},
global_step
)
pbar.update(1)
global_step += 1
if self.args.debug:
break
with torch.no_grad():
mean_1shot, conf_1shot,all_y_te_pred1,all_y_te1,all_posteriors1,unsupervised_z1 = self.eval(shot=1)
mean_5shot, conf_5shot,all_y_te_pred5,all_y_te5,all_posteriors5,unsupervised_z5 = self.eval(shot=5)
#np.save('D:\\无SeGMVAE-main\数据\\西储\\输出数据\\all_y_va_pred1.npy',all_y_te_pred1)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\all_y_va1.npy',all_y_te1)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\all_posteriors_va1.npy',all_posteriors1)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\unsupervised_z_va1.npy',unsupervised_z1)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\all_y_va_pred5.npy',all_y_te_pred5)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\all_y_va5.npy',all_y_te5)
#np.save('D:\\SeGMVAE-main\数据\\西储\\输出数据\\all_posteriors_va5.npy',all_posteriors5)
#np.save('D:\\SeGMVAE-main数据\\西储\\输出数据\\unsupervised_z_va5.npy',unsupervised_z5)
self.writer.add_scalars(
'test',
{'1shot-acc-mean': mean_1shot, '1shot-acc-conf': conf_1shot,
'5shot-acc-mean': mean_5shot, '5shot-acc-conf': conf_5shot},
global_epoch
)
if best_1shot < mean_1shot:
best_1shot = mean_1shot
state = {
'state_dict': self.model.state_dict(),
'accuracy': mean_1shot,
'epoch': global_epoch,
}
torch.save(state, os.path.join('D:\SeGMVAE-main\数据\西储', '1shot_best.pth'))
print("1shot {0}-th EPOCH Val Accuracy: {1:.4f}, BEST Accuracy: {2:.4f}".format(global_epoch, mean_1shot, best_1shot))
if best_5shot < mean_5shot:
best_5shot = mean_5shot
state = {
'state_dict': self.model.state_dict(),
'accuracy': mean_5shot,
'epoch': global_epoch,
}
torch.save(state, os.path.join('D:\SeGMVAE-main数据\西储', '5shot_best.pth'))
print("5shot {0}-th EPOCH Val Accuracy: {1:.4f}, BEST Accuracy: {2:.4f}".format(global_epoch, mean_5shot, best_5shot))
global_epoch += 1
if self.args.debug:
break
del self.model
self.model = SeGMVAE(
input_shape=self.input_shape,
unsupervised_em_iters=self.args.unsupervised_em_iters,
semisupervised_em_iters=self.args.semisupervised_em_iters,
fix_pi=self.args.fix_pi,
hidden_size=self.args.hidden_size,
component_size=self.args.way,
latent_size=self.args.latent_size,
train_mc_sample_size=self.args.train_mc_sample_size,
test_mc_sample_size=self.args.test_mc_sample_size
).to(self.args.device)
state_dict = torch.load(os.path.join('D:\SeGMVAE-main\数据\西储', '1shot_best.pth'))['state_dict']
self.model.load_state_dict(state_dict)
with torch.no_grad():
mean_1shot, conf_1shot = self.eval(shot=1, test=True)
print("1shot Final Test Accuracy: {0:.4f} Confidence Interval: {1:.4f}".format(mean_1shot, conf_1shot))
del self.model
self.model = SeGMVAE(
input_shape=self.input_shape,
unsupervised_em_iters=self.args.unsupervised_em_iters,
semisupervised_em_iters=self.args.semisupervised_em_iters,
fix_pi=self.args.fix_pi,
hidden_size=self.args.hidden_size,
component_size=self.args.way,
latent_size=self.args.latent_size,
train_mc_sample_size=self.args.train_mc_sample_size,
test_mc_sample_size=self.args.test_mc_sample_size
).to(self.args.device)
state_dict = torch.load(os.path.join('D:\SeGMVAE-main\数据\西储', '5shot_best.pth'))['state_dict']
self.model.load_state_dict(state_dict)
with torch.no_grad():
mean_5shot, conf_5shot = self.eval(shot=5, test=True)
print("5shot Final Test Accuracy: {0:.4f} Confidence Interval: {1:.4f}".format(mean_5shot, conf_5shot))
def eval(self, shot, test=False):
self.model.eval()
all_accuracies = np.array([])
all_y_te_pred=np.ones([1,self.args.way*self.args.query])
all_y_te=np.ones([1,self.args.way*self.args.query])
all_posteriors=np.ones([1,self.args.way*self.args.query,self.args.way])
while(True):
X_tr, y_tr, X_te, y_te = self.data.generate_test_episode(
way=self.args.way,
shot=shot,
query=self.args.query,
n_episodes=self.args.batch_size,
test=test
)
X_tr = torch.from_numpy(X_tr).to(self.args.device).float()
y_tr = torch.from_numpy(y_tr).to(self.args.device)
X_te = torch.from_numpy(X_te).to(self.args.device).float()
y_te = torch.from_numpy(y_te).to(self.args.device)
if len(all_accuracies) >= self.args.eval_episodes:
break
else:
y_te_pred,posteriors,unsupervised_z = self.model.prediction(X_tr, y_tr, X_te)
accuracies = torch.mean(torch.eq(y_te_pred, y_te).float(), dim=-1).cpu().numpy()
all_accuracies = np.concatenate([all_accuracies, accuracies], axis=0)
all_y_te_pred=np.concatenate([all_y_te_pred, y_te_pred], axis=0)
all_y_te=np.concatenate([all_y_te, y_te], axis=0)
all_posteriors=np.concatenate([all_posteriors, posteriors], axis=0)
all_accuracies = all_accuracies[:self.args.eval_episodes]
#all_y_te_pred=all_y_te_pred[:self.args.eval_episodes]
#all_y_te=all_y_te[:self.args.eval_episodes]
xxx=all_y_te_pred
#np.save('E:\\研究数据\\all_y_te_pred.npy',xxx[1:,:])
xxx1=all_y_te
#np.save('E:\\研究数据\\all_y_te.npy',xxx1[1:,:])
xxx2=all_posteriors
#np.save('E:\\研究数据\\all_posteriors.npy',xxx2[1:,:,:])
#np.save('E:\\研究数据\\unsupervised_z.npy',unsupervised_z.detach().numpy())
return np.mean(all_accuracies), 1.96*np.std(all_accuracies)/float(np.sqrt(self.args.eval_episodes)),xxx[1:,:],xxx1[1:,:],xxx2[1:,:],unsupervised_z.detach().numpy()