forked from facebookresearch/detr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
253 lines (221 loc) · 8.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
import yaml
from easydict import EasyDict
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from models.misc import update_queries
def get_args_parser():
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
parser.add_argument("--config", default="./config.yaml", type=str)
parser.add_argument("--eval", action="store_true")
parser.add_argument(
"--device", default="cuda", help="device to use for training / testing"
)
parser.add_argument(
"--world_size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument(
"--dist_url", default="env://", help="url used to set up distributed training"
)
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
with open(args.config) as f:
config = EasyDict(yaml.load(f, Loader=yaml.FullLoader))
if config.saver.output_dir:
Path(config.saver.output_dir).mkdir(parents=True, exist_ok=True)
if config.saver.frozen_weights is not None:
assert config.model.head.masks, "Frozen training is meant for segmentation only"
print(args)
print(config)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = config.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
train_backbone = config.trainer.lr_backbone > 0
model, criterion, postprocessors = build_model(
config.model, args, config.data.dataset_type, train_backbone
)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
param_dicts = [
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and p.requires_grad
]
},
{
"params": [
p
for n, p in model_without_ddp.named_parameters()
if "backbone" in n and p.requires_grad
],
"lr": config.trainer.lr_backbone,
},
]
optimizer = torch.optim.AdamW(
param_dicts, lr=config.trainer.lr, weight_decay=config.trainer.weight_decay
)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, config.trainer.lr_drop)
dataset_train = build_dataset(image_set="train", config=config.data)
dataset_val = build_dataset(image_set="val", config=config.data)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, config.trainer.batch_size, drop_last=True
)
data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=config.trainer.num_workers,
)
data_loader_val = DataLoader(
dataset_val,
config.trainer.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=config.trainer.num_workers,
)
if config.data.dataset_type == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", config.data)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if config.saver.frozen_weights is not None:
checkpoint = torch.load(config.saver.frozen_weights, map_location="cpu")
model_without_ddp.detr.load_state_dict(checkpoint["model"])
output_dir = Path(config.saver.output_dir)
if config.saver.load_pretrain:
utils.load_pretrain(config.saver.load_pretrain, model_without_ddp)
if config.saver.resume:
if config.saver.resume.startswith("https"):
checkpoint = torch.hub.load_state_dict_from_url(
config.saver.resume, map_location="cpu", check_hash=True
)
else:
checkpoint = torch.load(config.saver.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
if (
not args.eval
and "optimizer" in checkpoint
and "lr_scheduler" in checkpoint
and "epoch" in checkpoint
):
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
config.trainer.start_epoch = checkpoint["epoch"] + 1
if args.eval:
update_queries(model_without_ddp, config.model, args.device)
test_stats, coco_evaluator = evaluate(
model,
criterion,
postprocessors,
data_loader_val,
base_ds,
device,
config.saver.output_dir,
)
if config.saver.output_dir:
utils.save_on_master(
coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth"
)
return
print("Start training")
start_time = time.time()
for epoch in range(config.trainer.start_epoch, config.trainer.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model,
criterion,
data_loader_train,
optimizer,
device,
epoch,
config.trainer.clip_max_norm,
)
lr_scheduler.step()
if config.saver.output_dir:
checkpoint_paths = [output_dir / "checkpoint.pth"]
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % config.trainer.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f"checkpoint{epoch:04}.pth")
for checkpoint_path in checkpoint_paths:
utils.save_on_master(
{
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
},
checkpoint_path,
)
test_stats, coco_evaluator = evaluate(
model,
criterion,
postprocessors,
data_loader_val,
base_ds,
device,
config.saver.output_dir,
)
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
"epoch": epoch,
"n_parameters": n_parameters,
}
if config.saver.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / "eval").mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ["latest.pth"]
if epoch % 50 == 0:
filenames.append(f"{epoch:03}.pth")
for name in filenames:
torch.save(
coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name,
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"DETR training and evaluation script", parents=[get_args_parser()]
)
args = parser.parse_args()
main(args)