-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
139 lines (114 loc) · 5.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import copy
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super(RMSNorm, self).__init__()
self.eps = eps
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm_x = x * torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
return norm_x * self.scale
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
if config.embedding_pretrained is not None:
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
else:
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
self.position_embedding = Positional_Encoding(config.embed, config.pad_size, config.dropout, config.device)
self.encoder = Encoder(config.dim_model, config.num_head, config.hidden, config.dropout)
self.encoders = nn.ModuleList([
copy.deepcopy(self.encoder)
for _ in range(config.num_encoder)])
self.fc1 = nn.Linear(config.pad_size * config.dim_model, config.num_classes)
def forward(self, x):
out = self.embedding(x)
out = self.position_embedding(out)
for encoder in self.encoders:
out = encoder(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
return out
class Encoder(nn.Module):
def __init__(self, dim_model, num_head, hidden, dropout):
super(Encoder, self).__init__()
self.attention = Multi_Head_Attention(dim_model, num_head, dropout)
self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout)
self.pre_rmsnorm = RMSNorm(dim_model) # Pre-RMSNorm
self.post_rmsnorm = RMSNorm(dim_model) # Post-RMSNorm
def forward(self, x):
# Pre-LN
pre_norm = self.pre_rmsnorm(x)
# Attention layer with residual connection
attn_out = self.attention(pre_norm)
attn_out = attn_out + x # Residual connection
# Feed-forward layer with residual connection
pre_ffn_norm = self.pre_rmsnorm(attn_out)
ffn_out = self.feed_forward(pre_ffn_norm)
ffn_out = ffn_out + attn_out # Residual connection
# Post-LN
out = self.post_rmsnorm(ffn_out)
return out
class Positional_Encoding(nn.Module):
def __init__(self, embed, pad_size, dropout, device):
super(Positional_Encoding, self).__init__()
self.device = device
self.pe = torch.tensor([[pos / (10000.0 ** (i // 2 * 2.0 / embed)) for i in range(embed)] for pos in range(pad_size)])
self.pe[:, 0::2] = np.sin(self.pe[:, 0::2])
self.pe[:, 1::2] = np.cos(self.pe[:, 1::2])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = x + nn.Parameter(self.pe, requires_grad=False).to(self.device)
out = self.dropout(out)
return out
class Scaled_Dot_Product_Attention(nn.Module):
def __init__(self):
super(Scaled_Dot_Product_Attention, self).__init__()
def forward(self, Q, K, V, scale=None):
attention = torch.matmul(Q, K.permute(0, 2, 1))
if scale:
attention = attention * scale
attention = F.softmax(attention, dim=-1)
context = torch.matmul(attention, V)
return context
class Multi_Head_Attention(nn.Module):
def __init__(self, dim_model, num_head, dropout=0.0):
super(Multi_Head_Attention, self).__init__()
self.num_head = num_head
assert dim_model % num_head == 0
self.dim_head = dim_model // self.num_head
self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head)
self.fc_K = nn.Linear(dim_model, num_head * self.dim_head)
self.fc_V = nn.Linear(dim_model, num_head * self.dim_head)
self.attention = Scaled_Dot_Product_Attention()
self.fc = nn.Linear(num_head * self.dim_head, dim_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size = x.size(0)
Q = self.fc_Q(x)
K = self.fc_K(x)
V = self.fc_V(x)
Q = Q.view(batch_size * self.num_head, -1, self.dim_head)
K = K.view(batch_size * self.num_head, -1, self.dim_head)
V = V.view(batch_size * self.num_head, -1, self.dim_head)
scale = K.size(-1) ** -0.5
context = self.attention(Q, K, V, scale)
context = context.view(batch_size, -1, self.dim_head * self.num_head)
out = self.fc(context)
out = self.dropout(out)
return out + x # Residual connection
class Position_wise_Feed_Forward(nn.Module):
def __init__(self, dim_model, hidden, dropout=0.0):
super(Position_wise_Feed_Forward, self).__init__()
self.fc1 = nn.Linear(dim_model, hidden)
self.fc2 = nn.Linear(hidden, dim_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = self.fc1(x)
out = F.gelu(out) # Change activation to GELU
out = self.fc2(out)
out = self.dropout(out)
return out + x # Residual connection