forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
237 lines (186 loc) · 8.65 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Some general-purpose helper functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
def _get_ckpt_from_path(path):
ckpt = tf.train.latest_checkpoint(path)
if ckpt is None:
raise ValueError('No checkpoint found in %s' % path)
tf.logging.info('Reading from checkpoint %s', ckpt)
return ckpt
def run_graph_and_process_results(ops_to_fetch,
model_checkpoint_path,
process_fetched_values_fn,
feed_dict=None,
logging_frequency=10):
"""Run a graph repeatedly and use the fetched values.
Args:
ops_to_fetch: a single Tensor or nested structure of Tensors. The graph will
be run, and the below callables will be called, until a
tf.errors.OutOfRangeError is caught. This is thrown when a tf.data.Dataset
runs out of data.
model_checkpoint_path: Path to model checkpoint. If a directory, the most
recent model checkpoint in this directory will be used.
process_fetched_values_fn: A callable, potentially with side-effects, that
takes as input the output of sess.run(ops_to_fetch).
feed_dict: a feed_dict to be included in sess.run calls.
logging_frequency: after this many batches have been processed, a logging
message will be printed.
"""
ckpt = _get_ckpt_from_path(model_checkpoint_path)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, ckpt)
counter = 0
while True:
try:
fetched_values = sess.run(ops_to_fetch, feed_dict=feed_dict)
process_fetched_values_fn(fetched_values)
counter += 1
if counter % logging_frequency == 0:
tf.logging.info('Total examples processed so far: %d', counter)
except tf.errors.OutOfRangeError:
tf.logging.info('Finished processing data. Processed %d batches',
counter)
break
def map_predictor(input_op, predictor_fn, sub_batch_size):
"""Wrapper for tf.map_fn to do batched computation within each map step."""
num_elements = tf.contrib.framework.nest.flatten(input_op)[0].shape[0].value
# Only chop the batch dim into sub-batches if the input data is big.
if num_elements < sub_batch_size:
return predictor_fn(input_op)
pad_amount = -num_elements % sub_batch_size
def reshape(tensor):
"""Reshape into batches of sub-batches."""
pad_shape = tensor.shape.as_list()
pad_shape[0] = pad_amount
padding = tf.zeros(shape=pad_shape, dtype=tensor.dtype)
tensor = tf.concat([tensor, padding], axis=0)
if tensor.shape[0].value % sub_batch_size != 0:
raise ValueError('Incorrent padding size: %d does not '
'divide %d' % (sub_batch_size, tensor.shape[0].value))
shape = tensor.shape.as_list()
output_shape = [-1, sub_batch_size] + shape[1:]
return tf.reshape(tensor, shape=output_shape)
reshaped_inputs = tf.contrib.framework.nest.map_structure(reshape, input_op)
mapped_prediction = tf.map_fn(
predictor_fn,
reshaped_inputs,
parallel_iterations=1,
back_prop=False,
name=None,
dtype=tf.float32)
output_shape = [-1] + mapped_prediction.shape.as_list()[2:]
reshaped_output = tf.reshape(mapped_prediction, shape=output_shape)
# If padding was required for the input data, strip off the output of the
# predictor on this padding.
if pad_amount > 0:
reshaped_output = reshaped_output[0:(-pad_amount), ...]
return reshaped_output
def get_static_shape_without_adding_ops(inputs, fn):
"""Get the shape of fn(inputs) without adding ops to the default graph.
Operationally equivalent to fn(inputs).shape.as_list(), except that no
ops are added to the default graph.
In order to get the shape of fn(inputs) without adding ops to the graph
we make a new graph, make placeholders with the right shape, construct
fn(placeholders) in that graph, get the shape, and then delete the graph.
Note that using this function may have unintended consequences if fn() has
side effects.
Args:
inputs: a (nested) structure where the leaf elements are either Tensors or
None.
fn: a function that can be applied to inputs and returns a single Tensor.
Returns:
a python list containing the static shape of fn(inputs).
"""
g = tf.Graph()
with g.as_default():
def make_placeholder(tensor):
if tensor is None:
return None
else:
return tf.placeholder(shape=tensor.shape, dtype=tensor.dtype)
placeholders = tf.contrib.framework.nest.map_structure(make_placeholder,
inputs)
output_shape = fn(placeholders).shape.as_list()
del g
return output_shape
def value_op_with_initializer(value_op_fn, init_op_fn):
"""Make value_op that gets set by idempotent init_op on first invocation."""
init_has_been_run = tf.get_local_variable(
'has_been_run',
initializer=np.zeros(shape=(), dtype=np.bool),
dtype=tf.bool)
value_op = value_op_fn()
def run_init_and_toggle():
init_op = init_op_fn(value_op)
with tf.control_dependencies([init_op]):
assign_op = init_has_been_run.assign(True)
with tf.control_dependencies([assign_op]):
return tf.identity(value_op)
return tf.cond(init_has_been_run, lambda: value_op, run_init_and_toggle)
def scatter_by_anchor_indices(anchor_indices, data, index_shift):
"""Shift data such that it is indexed relative to anchor_indices.
For each row of the data array, we flip it horizontally and then shift it
so that the output at (anchor_index + index_shift) is the leftmost column
of the input. Namely:
output[i][j] = data[i][anchor_indices[i] - j + index_shift]
Args:
anchor_indices: [batch_size] int Tensor or np array
data: [batch_size, num_columns]: float Tensor or np array
index_shift: int
Returns:
[batch_size, num_columns] Tensor
"""
anchor_indices = tf.convert_to_tensor(anchor_indices)
data = tf.convert_to_tensor(data)
num_data_columns = data.shape[-1].value
indices = np.arange(num_data_columns)[np.newaxis, ...]
shifted_indices = anchor_indices[..., tf.newaxis] - indices + index_shift
valid_indices = shifted_indices >= 0
batch_size = tf.shape(data)[0]
batch_indices = tf.tile(
tf.range(batch_size)[..., tf.newaxis], [1, num_data_columns])
shifted_indices += batch_indices * num_data_columns
shifted_indices = tf.reshape(shifted_indices, [-1])
num_elements = tf.shape(data)[0] * tf.shape(data)[1]
row_indices = tf.range(num_elements)
stacked_indices = tf.stack([row_indices, shifted_indices], axis=1)
lower_batch_boundaries = tf.reshape(batch_indices * num_data_columns, [-1])
upper_batch_boundaries = tf.reshape(((batch_indices + 1) * num_data_columns),
[-1])
valid_indices = tf.logical_and(shifted_indices >= lower_batch_boundaries,
shifted_indices < upper_batch_boundaries)
stacked_indices = tf.boolean_mask(
stacked_indices,
valid_indices,
)
dense_shape = tf.cast(tf.tile(num_elements[..., tf.newaxis], [2]), tf.int64)
scattering_matrix = tf.SparseTensor(
indices=tf.cast(stacked_indices, tf.int64),
values=tf.ones_like(stacked_indices[:, 0], dtype=data.dtype),
dense_shape=dense_shape)
flattened_data = tf.reshape(data, [-1])[..., tf.newaxis]
flattened_output = tf.sparse_tensor_dense_matmul(
scattering_matrix,
flattened_data,
adjoint_a=False,
adjoint_b=False,
name=None)
return tf.reshape(
tf.transpose(flattened_output, [0, 1]), [-1, num_data_columns])