-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
executable file
·165 lines (141 loc) · 4.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python3
"""Training and Evaluate the Neural Network
Usage:
train.py [options] <yaml-config>
train.py (-h | --help )
Arguments:
yaml-config Path to the yaml hyper-parameter file
Options:
-h --help Show this screen.
-d --devices <devices> Comma seperated GPU devices [default: 0]
-i --identifier <identifier> Folder name [default: default-identifier]
--from <checkpoint> Path to a checkpoint
"""
import datetime
import glob
import os
import os.path as osp
import platform
import pprint
import random
import shlex
import shutil
import signal
import subprocess
import sys
import threading
import numpy as np
import torch
import yaml
from docopt import docopt
import sym
from sym.config import CI, CM, CO, C, load_config
from sym.datasets import ShapeNetDataset, Pix3dDataset
def git_hash():
cmd = 'git log -n 1 --pretty="%h"'
ret = subprocess.check_output(shlex.split(cmd)).strip()
if isinstance(ret, bytes):
ret = ret.decode()
return ret
def get_outdir(identifier):
# load config
name = str(datetime.datetime.now().strftime("%y%m%d-%H%M%S"))
name += "-%s" % git_hash()
name += "-%s" % identifier
outdir = osp.join(osp.expanduser(CI.logdir), name)
if not osp.exists(outdir):
os.makedirs(outdir)
C.to_yaml(osp.join(outdir, "config.yaml"))
os.system(f"git diff HEAD > {outdir}/gitdiff.patch")
os.system(f"find -name '*.py' -print0 | tar -cJf {outdir}/src.tar.xz --null -T -")
return outdir
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
args = docopt(__doc__)
config_file = args["<yaml-config>"] or "config/shapenet.yaml"
C.update(C.from_yaml(filename=config_file))
if args["--from"]:
C.io.resume_from = args["--from"]
CI.update(C.io)
CM.update(C.model)
CO.update(C.optim)
pprint.pprint(C, indent=4)
resume_from = CI.resume_from
# WARNING: still not deterministic
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
device_name = "cpu"
num_gpus = args["--devices"].count(",") + 1
os.environ["CUDA_VISIBLE_DEVICES"] = args["--devices"]
if torch.cuda.is_available():
device_name = "cuda"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(0)
print("Let's use", torch.cuda.device_count(), "GPU(s)!")
else:
print("CUDA is not available")
device = torch.device(device_name)
# 1. dataset
batch_size = CM.batch_size * num_gpus
datadir = CI.datadir
kwargs = {
"batch_size": batch_size,
"num_workers": CI.num_workers,
"pin_memory": True,
}
if CI.dataset == "ShapeNet":
Dataset = ShapeNetDataset
elif CI.dataset == "Pix3D":
Dataset = Pix3dDataset
else:
raise NotImplementedError
train_loader = torch.utils.data.DataLoader(
Dataset(datadir, split="train"), shuffle=True, **kwargs
)
val_loader = torch.utils.data.DataLoader(
Dataset(datadir, split="valid"), shuffle=False, **kwargs
)
if resume_from:
print("Restoring from", resume_from)
checkpoint = torch.load(resume_from)
# 2. model
model = sym.models.SymmetryNet().to(device)
print("# of params:", count_parameters(model))
model = sym.utils.MyDataParallel(
model, device_ids=list(range(args["--devices"].count(",") + 1))
)
if resume_from:
for module_name in list(checkpoint["model_state_dict"].keys()):
if module_name.startswith("module.backbone.volume_network.fc"):
del checkpoint["model_state_dict"][module_name]
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
# 3. optimizer
if CO.name == "Adam":
optim = torch.optim.Adam(model.parameters(), **CO.params)
elif CO.name == "SGD":
optim = torch.optim.SGD(model.parameters(), **CO.params)
else:
raise NotImplementedError
outdir = get_outdir(args["--identifier"])
shutil.copyfile(config_file, osp.join(outdir, "config_origin.yaml"))
print("outdir:", outdir)
try:
trainer = sym.trainer.Trainer(
device=device,
model=model,
optimizer=optim,
train_loader=train_loader,
val_loader=val_loader,
batch_size=batch_size,
out=outdir,
)
trainer.train()
except BaseException:
if len(glob.glob(f"{outdir}/viz/*")) <= 1:
shutil.rmtree(outdir)
raise
if __name__ == "__main__":
main()