-
Notifications
You must be signed in to change notification settings - Fork 5
/
validate.py
398 lines (380 loc) · 7.29 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import argparse
import os
import random
from detectron2.engine import DefaultPredictor, DefaultTrainer
from detectron2.modeling import build_model
from detectron2.utils.logger import setup_logger
setup_logger()
from detectron2.data.datasets import load_coco_json
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.evaluation import COCOEvaluator, inference_on_dataset
from detectron2.config import get_cfg
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data import build_detection_test_loader, DatasetCatalog, MetadataCatalog
import cv2
from openimages_utils.data_dicts import get_val_dicts, get_train_dicts
classes = ["Screwdriver",
"Light switch",
"Doughnut",
"Toilet paper",
"Wrench",
"Toaster",
"Tennis ball",
"Radish",
"Pomegranate",
"Kite",
"Table tennis racket",
"Hamster",
"Barge",
"Shower",
"Printer",
"Snowmobile",
"Fire hydrant",
"Limousine",
"Whale",
"Microwave oven",
"Asparagus",
"Lion",
"Spatula",
"Torch",
"Volleyball",
"Ambulance",
"Chopsticks",
"Raccoon",
"Blue jay",
"Lynx",
"Dice",
"Filing cabinet",
"Ruler",
"Power plugs and sockets",
"Bell pepper",
"Binoculars",
"Pretzel",
"Hot dog",
"Missile",
"Common fig",
"Croissant",
"Adhesive tape",
"Slow cooker",
"Dog bed",
"Harpsichord",
"Billiard table",
"Alpaca",
"Harbor seal",
"Grape",
"Nail",
"Paper towel",
"Alarm clock",
"Guacamole",
"Starfish",
"Zebra",
"Segway",
"Sea turtle",
"Scissors",
"Rhinoceros",
"Kangaroo",
"Jaguar",
"Leopard",
"Dumbbell",
"Envelope",
"Winter melon",
"Teapot",
"Camel",
"Beaker",
"Brown bear",
"Toilet",
"Teddy bear",
"Briefcase",
"Stop sign",
"Tiger",
"Cabbage",
"Giraffe",
"Polar bear",
"Shark",
"Rabbit",
"Swim cap",
"Pressure cooker",
"Kitchen knife",
"Submarine sandwich",
"Flashlight",
"Penguin",
"Snake",
"Zucchini",
"Bat",
"Food processor",
"Ostrich",
"Sea lion",
"Goldfish",
"Elephant",
"Rocket",
"Mouse",
"Oyster",
"Digital clock",
"Otter",
"Dolphin",
"Punching bag",
"Corded phone",
"Tennis racket",
"Pancake",
"Mango",
"Crocodile",
"Waffle",
"Computer mouse",
"Kettle",
"Tart",
"Oven",
"Banana",
"Cheetah",
"Raven",
"Frying pan",
"Pear",
"Fox",
"Skateboard",
"Rugby ball",
"Watermelon",
"Flute",
"Canary",
"Door handle",
"Saxophone",
"Burrito",
"Suitcase",
"Roller skates",
"Dagger",
"Seat belt",
"Washing machine",
"Jet ski",
"Sombrero",
"Pig",
"Drinking straw",
"Peach",
"Tortoise",
"Towel",
"Tablet computer",
"Cucumber",
"Mule",
"Potato",
"Frog",
"Bear",
"Lighthouse",
"Belt",
"Baseball bat",
"Racket",
"Sword",
"Bagel",
"Goat",
"Lizard",
"Parrot",
"Owl",
"Turkey",
"Cello",
"Knife",
"Handgun",
"Carrot",
"Hamburger",
"Grapefruit",
"Tap",
"Tea",
"Bull",
"Turtle",
"Bust",
"Monkey",
"Wok",
"Broccoli",
"Pitcher",
"Whiteboard",
"Squirrel",
"Jug",
"Woodpecker",
"Pizza",
"Surfboard",
"Sofa bed",
"Sheep",
"Candle",
"Muffin",
"Cookie",
"Apple",
"Chest of drawers",
"Skull",
"Chicken",
"Loveseat",
"Baseball glove",
"Piano",
"Waste container",
"Barrel",
"Swan",
"Taxi",
"Lemon",
"Pumpkin",
"Sparrow",
"Orange",
"Tank",
"Sandwich",
"Coffee",
"Juice",
"Coin",
"Pen",
"Watch",
"Eagle",
"Goose",
"Falcon",
"Christmas tree",
"Sunflower",
"Vase",
"Football",
"Canoe",
"High heels",
"Spoon",
"Mug",
"Swimwear",
"Duck",
"Cat",
"Tomato",
"Cocktail",
"Clock",
"Cowboy hat",
"Miniskirt",
"Cattle",
"Strawberry",
"Bronze sculpture",
"Pillow",
"Squash",
"Traffic light",
"Saucer",
"Reptile",
"Cake",
"Plastic bag",
"Studio couch",
"Beer",
"Scarf",
"Coffee cup",
"Wine",
"Mushroom",
"Traffic sign",
"Camera",
"Rose",
"Couch",
"Handbag",
"Fedora",
"Sock",
"Computer keyboard",
"Mobile phone",
"Ball",
"Balloon",
"Horse",
"Boot",
"Fish",
"Backpack",
"Skirt",
"Van",
"Bread",
"Glove",
"Dog",
"Airplane",
"Motorcycle",
"Drink",
"Book",
"Train",
"Flower",
"Carnivore",
"Human ear",
"Toy",
"Box",
"Truck",
"Wheel",
"Aircraft",
"Bus",
"Human mouth",
"Sculpture",
"Shirt",
"Hat",
"Vehicle registration plate",
"Guitar",
"Sun hat",
"Bottle",
"Luggage and bags",
"Trousers",
"Bicycle wheel",
"Suit",
"Bowl",
"Man",
"Flowerpot",
"Laptop",
"Boy",
"Picture frame",
"Bird",
"Car",
"Shorts",
"Woman",
"Platter",
"Tie",
"Girl",
"Skyscraper",
"Person",
"Flag",
"Jeans",
"Dress"]
if __name__ == "__main__":
#Add arguments
parser = argparse.ArgumentParser(description='choose args to infer instances frm sample test images OR evaluate model performance on test dataset')
parser.add_argument('--configs', help='path to model config file', required=True)
parser.add_argument('--model_pth', help='path to .pth file', required=True)
parser.add_argument('--mode', help='choose "infer" or "evaluate" ')
parser.add_argument('--threshold', type=float, help='confidence threshold level, float bet 0 and 1', default=0.5)
args = parser.parse_args()
#Get Datasets
DatasetCatalog.register('openimages_val', get_val_dicts)
MetadataCatalog.get('openimages_val').set(thing_classes=classes)
openimages_val_metadata = MetadataCatalog.get('openimages_val')
DatasetCatalog.register('openimages_train', get_train_dicts)
MetadataCatalog.get('openimages_train').set(thing_classes=classes)
openimages_train_metadata = MetadataCatalog.get('openimages_train')
#Visualizing datasets
# val_dicts = get_val_dicts()
# for d in random.sample(val_dicts, 10):
# img = cv2.imread(d["file_name"])
# print(d["file_name"])
# visualizer = Visualizer(img[:,:,::-1], metadata=openimages_val_metadata, scale=0.5)
# vis = visualizer.draw_dataset_dict(d)
# cv2.imshow("image", vis.get_image()[:,:,::-1])
# cv2.waitKey(0)
cfg = get_cfg()
cfg.merge_from_file(str(args.configs))
cfg.MODEL.WEIGHTS = str(args.model_pth)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.threshold
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 300
cfg.DATASETS.TEST = ("openimages_val",)
cfg.DATASETS.TRAIN = ("openimages_train",)
#infer image instances
predictor = DefaultPredictor(cfg)
# Visualizing Datasets
# val_dicts = get_val_dicts()
# for d in random.sample(val_dicts, 10):
# im = cv2.imread(d['file_name'])
# outputs = predictor(im)
# v = Visualizer(im[:, :, ::-1],
# metadata = openimages_val_metadata,
# scale = 0.8,
# instance_mode = ColorMode.IMAGE_BW)
# v = v.draw_instance_predictions(outputs['instances'].to('cpu'))
# cv2.imshow('image', v.get_image()[:, :, ::-1])
# cv2.waitKey(0)
if args.mode == 'infer':
val_dicts = get_val_dicts()
for d in random.sample(val_dicts, 10):
im = cv2.imread(d['file_name'])
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata = openimages_val_metadata,
scale = 0.8,
instance_mode = ColorMode.IMAGE_BW)
v = v.draw_instance_predictions(outputs['instances'].to('cpu'))
cv2.imshow('image', v.get_image()[:, :, ::-1])
cv2.waitKey(0)
if args.mode == 'evaluate':
print(cfg.DATASETS.TEST[0])
trainer = DefaultTrainer(cfg)
model = trainer.build_model(cfg)
DetectionCheckpointer(model).load(args.model_pth)
evaluator = COCOEvaluator(cfg.DATASETS.TEST[0], cfg, False, output_dir="./output/")
val_loader = build_detection_test_loader(cfg, "openimages_val")
inference_on_dataset(model, val_loader, evaluator)