-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_angle.py
27 lines (23 loc) · 1.13 KB
/
predict_angle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
"""
Gaussian Process
"""
# import matplotlib.pyplot as plt
# from sklearn.gaussian_process import GaussianProcessRegressor
# from sklearn.gaussian_process.kernels import RBF, RationalQuadratic, ExpSineSquared
# kernel = 1.0 * RBF(length_scale=40.0, length_scale_bounds=(1e-1, 2e2))
# # kernel = ExpSineSquared(length_scale=20.0, periodicity=1)
# gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.01, random_state=0)
# for key in filtered_kpts.keys():
# if 'elbow_angles' in key:
# X = np.linspace(start=0,stop=30,num=31)
# y = filtered_kpts[key][:,0]
# plt.plot(X, y, label=key)
# for i in range(10,30):
# X10 = X[0:i].reshape(-1,1)
# y10 = y[0:i]
# gpr.fit(X10, y10)
# gpr.kernel_
# mean_prediction, std_prediction = gpr.predict(X[i+1].reshape(-1, 1), return_std=True)
# plt.plot(X[i+1], mean_prediction, marker="x")
# plt.legend(bbox_to_anchor=(0, 1), loc='upper left', ncol=1)
# plt.show()