-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvtrace_test.py
191 lines (171 loc) · 7.43 KB
/
vtrace_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for V-trace.
The following code is mainly referenced and copied from:
https://github.com/deepmind/scalable_agent/blob/master/vtrace_test.py
"""
import copy
import numpy as np
import unittest
from parl import layers
from paddle import fluid
from parameterized import parameterized
from parl.algorithms.fluid.impala import vtrace
from parl.utils import get_gpu_count
def _shaped_arange(*shape):
"""Runs np.arange, converts to float and reshapes."""
return np.arange(np.prod(shape), dtype=np.float32).reshape(*shape)
def _ground_truth_calculation(behaviour_actions_log_probs,
target_actions_log_probs, discounts, rewards,
values, bootstrap_value, clip_rho_threshold,
clip_pg_rho_threshold):
"""Calculates the ground truth for V-trace in Python/Numpy."""
log_rhos = target_actions_log_probs - behaviour_actions_log_probs
vs = []
seq_len = len(discounts)
rhos = np.exp(log_rhos)
cs = np.minimum(rhos, 1.0)
clipped_rhos = rhos
if clip_rho_threshold:
clipped_rhos = np.minimum(rhos, clip_rho_threshold)
clipped_pg_rhos = rhos
if clip_pg_rho_threshold:
clipped_pg_rhos = np.minimum(rhos, clip_pg_rho_threshold)
# This is a very inefficient way to calculate the V-trace ground truth.
# We calculate it this way because it is close to the mathematical notation of
# V-trace.
# v_s = V(x_s)
# + \sum^{T-1}_{t=s} \gamma^{t-s}
# * \prod_{i=s}^{t-1} c_i
# * \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))
# Note that when we take the product over c_i, we write `s:t` as the notation
# of the paper is inclusive of the `t-1`, but Python is exclusive.
# Also note that np.prod([]) == 1.
values_t_plus_1 = np.concatenate([values, bootstrap_value[None, :]],
axis=0)
for s in range(seq_len):
v_s = np.copy(values[s]) # Very important copy.
for t in range(s, seq_len):
v_s += (np.prod(discounts[s:t], axis=0) * np.prod(cs[s:t], axis=0)
* clipped_rhos[t] * (rewards[t] + discounts[t] *
values_t_plus_1[t + 1] - values[t]))
vs.append(v_s)
vs = np.stack(vs, axis=0)
pg_advantages = (clipped_pg_rhos * (rewards + discounts * np.concatenate(
[vs[1:], bootstrap_value[None, :]], axis=0) - values))
return vtrace.VTraceReturns(vs=vs, pg_advantages=pg_advantages)
class VtraceTest(unittest.TestCase):
def setUp(self):
gpu_count = get_gpu_count()
if gpu_count > 0:
place = fluid.CUDAPlace(0)
self.gpu_id = 0
else:
place = fluid.CPUPlace()
self.gpu_id = -1
self.executor = fluid.Executor(place)
@parameterized.expand([('Batch1', 1), ('Batch4', 4)])
def test_from_importance_weights(self, name, batch_size):
"""Tests V-trace against ground truth data calculated in python."""
seq_len = 5
# Create log_rhos such that rho will span from near-zero to above the
# clipping thresholds. In particular, calculate log_rhos in [-2.5, 2.5),
# so that rho is in approx [0.08, 12.2).
log_rhos = _shaped_arange(seq_len, batch_size) / (batch_size * seq_len)
log_rhos = 5 * (log_rhos - 0.5) # [0.0, 1.0) -> [-2.5, 2.5).
# Fake behaviour_actions_log_probs, target_actions_log_probs
target_actions_log_probs = log_rhos + 1.0
behaviour_actions_log_probs = np.ones(
shape=log_rhos.shape, dtype='float32')
values = {
'behaviour_actions_log_probs':
behaviour_actions_log_probs,
'target_actions_log_probs':
target_actions_log_probs,
# T, B where B_i: [0.9 / (i+1)] * T
'discounts':
np.array([[0.9 / (b + 1) for b in range(batch_size)]
for _ in range(seq_len)],
dtype=np.float32),
'rewards':
_shaped_arange(seq_len, batch_size),
'values':
_shaped_arange(seq_len, batch_size) / batch_size,
'bootstrap_value':
_shaped_arange(batch_size) + 1.0,
'clip_rho_threshold':
3.7,
'clip_pg_rho_threshold':
2.2,
}
# Calculated by numpy/python
ground_truth_v = _ground_truth_calculation(**values)
# Calculated by Fluid
test_program = fluid.Program()
with fluid.program_guard(test_program):
behaviour_actions_log_probs_input = layers.data(
name='behaviour_actions_log_probs',
shape=[seq_len, batch_size],
dtype='float32',
append_batch_size=False)
target_actions_log_probs_input = layers.data(
name='target_actions_log_probs',
shape=[seq_len, batch_size],
dtype='float32',
append_batch_size=False)
discounts_input = layers.data(
name='discounts',
shape=[seq_len, batch_size],
dtype='float32',
append_batch_size=False)
rewards_input = layers.data(
name='rewards',
shape=[seq_len, batch_size],
dtype='float32',
append_batch_size=False)
values_input = layers.data(
name='values',
shape=[seq_len, batch_size],
dtype='float32',
append_batch_size=False)
bootstrap_value_input = layers.data(
name='bootstrap_value',
shape=[batch_size],
dtype='float32',
append_batch_size=False)
fluid_inputs = {
'behaviour_actions_log_probs':
behaviour_actions_log_probs_input,
'target_actions_log_probs': target_actions_log_probs_input,
'discounts': discounts_input,
'rewards': rewards_input,
'values': values_input,
'bootstrap_value': bootstrap_value_input,
'clip_rho_threshold': 3.7,
'clip_pg_rho_threshold': 2.2,
}
output = vtrace.from_importance_weights(**fluid_inputs)
self.executor.run(fluid.default_startup_program())
feed = copy.copy(values)
del feed['clip_rho_threshold']
del feed['clip_pg_rho_threshold']
[output_vs, output_pg_advantage] = self.executor.run(
test_program,
feed=feed,
fetch_list=[output.vs, output.pg_advantages])
np.testing.assert_almost_equal(ground_truth_v.vs, output_vs, 5)
np.testing.assert_almost_equal(ground_truth_v.pg_advantages,
output_pg_advantage, 5)
if __name__ == '__main__':
unittest.main()