-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
202 lines (149 loc) · 7.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import time
import logging
import argparse
from glob import glob
import numpy as np
import torch
from torch import optim
import torch.nn.functional as F
from utils import initialize
from metric.iou_dice import IoUDice
from jaccard_loss import JaccardLoss
from models.mrf_unet import ChildNet
from datas.dataloader import get_dataloader
def get_args():
parser = argparse.ArgumentParser(description='Train', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--output', dest='output', type=str, default="../outputs/train")
parser.add_argument('--data-dir', dest='data_dir', type=str, default="/Users/whoami/datasets")
parser.add_argument('--dataset', dest='dataset', type=str, default="land")
parser.add_argument('--freq', type=int, default=10, dest='freq')
parser.add_argument('--workers', type=int, default=4, dest='workers')
parser.add_argument('--batch-size', type=int, default=8, dest='batch_size')
parser.add_argument('--size', type=int, default=256, dest='size')
parser.add_argument('--epochs', type=int, default=100, dest='epochs')
parser.add_argument('--learning-rate-weights', type=float, default=0.0005, dest='lr_weights')
parser.add_argument('--weight-decay-weights', type=float, default=0.0001, dest='weight_decay_weights')
parser.add_argument('--channel-step', type=int, default=5, dest='channel_step')
parser.add_argument('--choices', dest='choices', type=str, default="8,8,3,3,1,3,3,1,3,3,1,3,3,1,0,8,1,0,8,1,0,8,1,0,8,1")
args = parser.parse_args()
args.supernet = False
if args.dataset == 'land':
args.image_channels = 3
args.num_classes = 6
args.ignore_index = 6
elif args.dataset in ['road', 'building']:
args.image_channels = 3
args.num_classes = 1
args.ignore_index = None
elif args.dataset == 'chaos':
args.image_channels = 1
args.num_classes = 5
args.ignore_index = None
elif args.dataset == 'promise':
args.image_channels = 1
args.num_classes = 1
args.ignore_index = None
return args
def main(args):
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
train_loader, test_loader = get_dataloader(args)
choices = np.array([int(c) for c in args.choices.split(',')])
model = ChildNet(args.image_channels, args.num_classes, args.channel_step, choices).to(device)
initialize(model)
optimizer_weights = optim.Adam(model.parameters(), lr=args.lr_weights, weight_decay=args.weight_decay_weights)
lr_lambda = lambda epoch: (1 - epoch / args.epochs) ** 0.9
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer_weights, lr_lambda=lr_lambda)
criterion = JaccardLoss(ignore_index=args.ignore_index).to(device)
start_epoch = 0
ckp_dir = os.path.join(args.output, 'checkpoints')
os.makedirs(ckp_dir, exist_ok=True)
avail = glob(os.path.join(ckp_dir, 'checkpoint*.pth'))
avail = [(int(f[-len('.pth') - 3:-len('.pth')]), f) for f in avail]
avail = sorted(avail)
ckp_path = avail[-1][1] if avail else None
if ckp_path and os.path.isfile(ckp_path):
checkpoint = torch.load(ckp_path, map_location=device)
start_epoch = checkpoint['epoch']
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
optimizer_weights.load_state_dict(checkpoint['optimizer_weights'])
scheduler.load_state_dict(checkpoint['lr_scheduler'])
logging.info(f"Checkpoint {ckp_path} is loaded")
else:
logging.info(f"No checkpoint is found")
for epoch in range(start_epoch, args.epochs):
train(model, train_loader, optimizer_weights, criterion, device, epoch, args)
if epoch == args.epochs - 1:
test(model, test_loader, device, epoch, args)
scheduler.step()
state = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer_weights': optimizer_weights.state_dict(),
'lr_scheduler': scheduler.state_dict()}
filename = f"checkpoint{epoch+1:03d}.pth"
filename = os.path.join(ckp_dir, filename)
torch.save(state, filename)
def train(model, train_loader, optimizer_weights, criterion, device, epoch, args):
logging.info(f"*****Begin train epoch {epoch + 1}*****")
model.train()
end = time.time()
for iter, (image, label) in enumerate(train_loader):
start = time.time()
toprint = f"[{epoch + 1}][{iter}|{len(train_loader)}], data time: {(start - end):.6f}, "
image = image.to(device=device, dtype=torch.float32)
label = label.to(device=device, dtype=torch.long)
optimizer_weights.zero_grad()
logits = model(image)
loss = criterion(logits, label)
loss.backward()
optimizer_weights.step()
end = time.time()
toprint += f"batch time: {(end - start):.6f}, "
if iter % args.freq == 0:
lr = optimizer_weights.param_groups[0]['lr']
toprint += f"learning rate: {lr:.6f}, loss: {loss.item():.6f}"
logging.info(toprint)
logging.info(f"*****Finish train epoch {epoch + 1}*****\n")
def test(model, test_loader, device, epoch, args):
logging.info(f"*****Begin test epoch {epoch + 1}*****")
model.eval()
iou_dice = IoUDice(args.num_classes, device, args.dataset, args.ignore_index)
end = time.time()
for iter, (image, label) in enumerate(test_loader):
start = time.time()
toprint = f"[{epoch + 1}][{iter}|{len(test_loader)}], data time: {(start - end):.6f}, "
image = image.to(device=device, dtype=torch.float32)
label = label.to(device=device, dtype=torch.long)
with torch.no_grad():
logits = model(image)
if args.num_classes > 1:
prob = logits.log_softmax(dim=1).exp()
pred = prob.argmax(1)
else:
prob = F.logsigmoid(logits).exp()
pred = (prob > 0.5).squeeze(1).to(torch.long)
iou_dice.add(pred, label)
iou, dice = iou_dice.value()
end = time.time()
toprint += f"batch time: {(end - start):.6f}, "
if iter % args.freq == 0:
toprint += f"IoU: {iou:.2f}, Dice: {dice:.2f}"
logging.info(toprint)
iou, dice = iou_dice.value()
logging.info(f"*****Finish test epoch {epoch + 1}*****\n")
logging.info(f"IoU: {iou:.2f}, Dice: {dice:.2f}")
if __name__ == '__main__':
args = get_args()
os.makedirs(args.output, exist_ok=True)
# https://stackoverflow.com/questions/30861524/logging-basicconfig-not-creating-log-file-when-i-run-in-pycharm
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(filename=os.path.join(args.output, "train.log"),
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
logging.info(str(args))
main(args)