-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelevator.py
218 lines (172 loc) · 7.42 KB
/
relevator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import sys
from sklearn import ensemble
class Relevator():
"""
Predicts the relevance of points using machine learning methods.
All methods and attributes that start with '_' should be treated as
private.
"""
def __init__(self, metamodel, kwargs):
self.metamodel = metamodel
self.rebuild_interval = kwargs.get("rebuild_interval", 100)
self.fresh_info = kwargs.get("fresh_info", None)
self._predictor = kwargs.get("predictor",
ensemble.RandomForestRegressor())
self._relevance_function = lambda x: 1
# Set the desired dynamic threshold
threshold_kwargs = kwargs.get("threshold_kwargs", {})
threshold_type = threshold_kwargs.get("type", "alpha-beta")
if threshold_type == "alpha-beta":
self._threshold = AB_Dynamic_Threshold(metamodel, threshold_kwargs)
elif threshold_type == "old":
self._threshold = Dynamic_Threshold(metamodel, threshold_kwargs)
else:
self._threshold = AB_Dynamic_Threshold(metamodel, threshold_kwargs)
self._built = False
# Used to keep track of when to rebuild the surrogate.
self._last_rebuild = 0
return
def _update(self):
"""
Relearns the predictor if needed and adjusts the relevance function.
"""
num_new_evals = (self.metamodel.model_evaluations - self._last_rebuild)
if num_new_evals >= self.rebuild_interval:
self._built = True
self._last_rebuild = self.metamodel.model_evaluations
# Rebuild relevance function and make it usable on arrays.
self._relevance_function = self._construct_relevance_function()
rel_fun = np.vectorize(self._relevance_function)
# Learn relevance prediction model
data = self.metamodel.history.get_model_evaluations()
relevance_values = rel_fun(data[:, -1])
self._predictor.fit(data[:, :-1], relevance_values)
return
def _construct_relevance_function(self):
""" Builds the relevance function according to current history. """
data = self.metamodel.history.get_model_evaluations()
values = data[:, -1]
v_min, v_avg = np.amin(values), np.mean(values)
# Safety, so we don't devide by 0
v_diff = max(abs(v_avg - v_min), sys.float_info.min)
def relevance_fun(v):
if v < v_min:
return 1
else:
return 1 / (1 + (v - v_min)/v_diff)
return relevance_fun
def _prepare_data(self, coords):
""" Transforms the data into the correct shape for the predictor. """
return np.array([coords])
def set_random_seed(self, seed):
""" This should set all used random number generator seeds. """
np.random.seed(seed)
self._threshold.set_random_seed(seed)
return
def is_built(self):
return self._built
def evaluate(self, coords):
""" Predict relevance of given point. """
self._update()
data = self._prepare_data(coords)
if self.fresh_info and self.metamodel.step_index % self.fresh_info == 0:
# If [fresh_info] is selected, we sometimes force the true model.
prediction = 1
elif self._built:
prediction = self._predictor.predict(data)
else:
prediction = 1
return prediction
def is_relevant(self, relevance):
""" Decides wheter or not the relevance renders the point relevant. """
is_relevant = self._threshold.value <= relevance
self._threshold.update()
return is_relevant
class Dynamic_Threshold():
"""
Implements a simple dynamic threshold that tries to locally adjust the
usage rate of the surrogate to a certain interval.
"""
def __init__(self, metamodel, kwargs):
self.metamodel = metamodel
self.desired_rate = kwargs.get("desired_surr_rate", 0.7)
self.acceptable_offset = kwargs.get("acceptable_offset", 0.05)
self.value = kwargs.get("initial", 0.5)
self.step = kwargs.get("step", 0.0001)
self.big_step_mult = kwargs.get("big_step_mult", 10)
return
def update(self):
"""
Adjusts the local surrogate usage rate. The current implementation uses
the history for information and is thus always at least a step late,
however that should not matter.
"""
if not self.metamodel.surrogate.is_built():
# Do not adjust until we have a surrogate
return
surr_rate = 1 - self.metamodel.history.get_model_usage_rate()
up_bound = self.desired_rate + self.acceptable_offset
low_bound = self.desired_rate + self.acceptable_offset
if low_bound <= surr_rate <= up_bound:
# Usage rate is acceptable.
return
T = self.value
# Adjust step size if close to border of [0, 1]
step_size = min(self.step, T/2, (1 - T)/2)
# Check if critical (Needs adjustement fast)
# !!! This is all very hacky and needs to be improved !!!
if surr_rate > 1 - (1 - up_bound)/2 or surr_rate < low_bound/2:
step_size = min(self.step * self.big_step_mult, T/1.5, (1 - T)/1.5)
# Adjust
if surr_rate > up_bound:
self.value = max(0, min(1, self.value - step_size))
elif surr_rate < low_bound:
self.value = max(0, min(1, self.value + step_size))
return
def set_random_seed(self, seed):
""" This should set all used random number generator seeds. """
np.random.seed(seed)
return
class AB_Dynamic_Threshold():
"""
Implements a simple dynamic threshold that tries to locally adjust the
usage rate of the surrogate to a certain interval.
"""
def __init__(self, metamodel, kwargs):
self.metamodel = metamodel
self.desired_rate = kwargs.get("desired_surr_rate", 0.7)
self.acceptable_offset = kwargs.get("acceptable_offset", 0.05)
self.value = kwargs.get("initial", 0.5)
self.step = kwargs.get("step", 0.0001)
self.alpha = kwargs.get("alpha", 42)
self.beta = kwargs.get("beta", 10)
return
def update(self):
"""
Adjusts the local surrogate usage rate. The current implementation uses
the history for information and is thus always at least a step late,
however that should not matter.
"""
if not self.metamodel.surrogate.is_built():
# Do not adjust until we have a surrogate
return
surr_rate = 1 - self.metamodel.history.get_model_usage_rate()
surr_rate_err = abs(self.desired_rate - surr_rate)
if surr_rate_err <= self.acceptable_offset:
# Usage rate is acceptable.
return
T = self.value
edge_adjustment = 1 - ((2*T - 1) ** self.alpha)
err_adjustment = min(self.beta, 1 / ((1 - surr_rate_err) ** self.beta))
step_size = self.step * edge_adjustment * err_adjustment
# Adjust
if surr_rate > self.desired_rate:
self.value = max(T/self.beta, T - step_size)
elif surr_rate < self.desired_rate:
self.value = min(1 - ((1-T)/self.beta), T + step_size)
return
def set_random_seed(self, seed):
""" This should set all used random number generator seeds. """
np.random.seed(seed)
return