-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
470 lines (377 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import matplotlib
matplotlib.use('Agg')
import os
from argparse import ArgumentParser
import scipy
import random
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import TensorDataset, DataLoader
from torchvision.utils import save_image
from torch.autograd import Variable
from c_rnn_gan import Generator, Discriminator
import utils
from config import parsers
import matplotlib.pyplot as plt
DATA_DIR_TRN = '../../DATA/nsdi_DATA'
# DATA_DIR_VAL = '../../DATA/DATA_2000_10/test'
ARGS = parsers()
G_FN = 'c_rnn_gan_g.pth'
D_FN = 'c_rnn_gan_d.pth'
gloss_array = []
dloss_array = []
MAX_GRAD_NORM = 5.0
BATCH_SIZE = 32
MAX_EPOCHS = 500
L2_DECAY = 1.0
MAX_SEQ_LEN = 300
PERFORM_LOSS_CHECKING = False
FREEZE_G = False
FREEZE_D = False
NUM_DUMMY_TRN = 256
NUM_DUMMY_VAL = 128
EPSILON = 1e-40 # value to use to approximate zero (to prevent undefined results)
def write_log(log_values, model_name, log_dir="", log_type='loss', type_write='a'):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
with open(log_dir+"/"+model_name+"_"+log_type+".txt", type_write) as f:
f.write(','.join(log_values)+"\n")
def get_accuracy(logits_real, logits_gen):
''' Discriminator accuracy
'''
real_corrects = (logits_real > 0.5).sum()
gen_corrects = (logits_gen < 0.5).sum()
acc = (real_corrects + gen_corrects) / (len(logits_real) + len(logits_gen))
return acc.item()
class GLoss(nn.Module):
''' C-RNN-GAN generator loss
'''
def __init__(self):
super(GLoss, self).__init__()
def forward(self, a, logits_gen):
logits_gen = torch.clamp(logits_gen, EPSILON, 1.0)
batch_loss = -torch.log(logits_gen)
return torch.mean(batch_loss)
class DLoss(nn.Module):
''' C-RNN-GAN discriminator loss
'''
def __init__(self, label_smoothing=False):
super(DLoss, self).__init__()
self.label_smoothing = label_smoothing
def forward(self, logits_real, logits_gen):
''' Discriminator loss
logits_real: logits from D, when input is real
logits_gen: logits from D, when input is from Generator
loss = -(ylog(p) + (1-y)log(1-p))
'''
logits_real = torch.clamp(logits_real, EPSILON, 1.0)
d_loss_real = -torch.log(logits_real)
if self.label_smoothing:
"Label Smoothing"
p_fake = torch.clamp((1 - logits_real), EPSILON, 1.0)
d_loss_fake = -torch.log(p_fake)
d_loss_real = 0.9*d_loss_real + 0.1*d_loss_fake
logits_gen = torch.clamp((1 - logits_gen), EPSILON, 1.0)
d_loss_gen = -torch.log(logits_gen)
batch_loss = d_loss_real + d_loss_gen
return torch.mean(batch_loss)
def control_grad(model, freeze=True):
''' Freeze/unfreeze optimization of model
'''
if freeze:
for param in model.parameters():
param.requires_grad = False
else: # unfreeze
for param in model.parameters():
param.requires_grad = True
def check_loss(model, loss):
''' Check loss and control gradients if necessary
'''
control_grad(model['g'], freeze=False)
control_grad(model['d'], freeze=False)
if loss['d'] == 0.0 and loss['g'] == 0.0:
print('Both G and D train loss are zero. Exiting.')
return False
elif loss['d'] == 0.0: # freeze D
control_grad(model['d'], freeze=True)
elif loss['g'] == 0.0: # freeze G
control_grad(model['g'], freeze=True)
# elif loss['g'] < 2.0 or loss['d'] < 2.0:
# control_grad(model['d'], freeze=True)
if loss['g']*0.7 > loss['d']:
control_grad(model['g'], freeze=True)
return True
def get_random_batches(path, batch_size, gt=0):
length = len([name for name in os.listdir(path) if os.path.isfile(os.path.join(path, name))]) - 1
index_train = np.random.choice(int(length),batch_size, False)
data = []
if gt==0:
for index in index_train:
tmp = np.load(path+'./{}.npy'.format(index))[:ARGS.seq_len]
data.append(tmp)
data = np.array(data)/151 - 1
return data
else:
for index in index_train:
tmp = np.load(path+'./{}.npy'.format(index))
data.append(tmp)
data = np.array(data)/151 - 1
return data[:, :ARGS.seq_len], data[:, ARGS.seq_len:]
def run_training(model, optimizer, criterion, dataloader, ep, freeze_g=False, freeze_d=False):
args = parsers()
''' Run single training epoch
'''
loss = {
'g': 10.0,
'd': 10.0
}
num_feats = model['g'].num_feats
cuda = True if (torch.cuda.is_available() and args.GPU) else False
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
model['g'].train()
model['d'].train()
adversarial_loss = torch.nn.BCELoss()
g_loss_total = 0.0
d_loss_total = 0.0
num_corrects = 0
num_sample = 0
log_sum_real = 0.0
log_sum_gen = 0.0
for i, (batch_input, labels) in enumerate(dataloader):
real_batch_sz = len(batch_input)
batch_input = batch_input.type(torch.FloatTensor) # 128,100
# get initial states
# each batch is independent i.e. not a continuation of previous batch
# so we reset states for each batch
# POSSIBLE IMPROVEMENT: next batch is continuation of previous batch
g_states = model['g'].init_hidden(real_batch_sz)
d_state = model['d'].init_hidden(real_batch_sz)
labels = Variable(labels.type(FloatTensor))
# ---------------------
# Train Discriminator
# ---------------------
if not freeze_d:
optimizer['d'].zero_grad()
# feed real and generated input to discriminator
z = torch.empty([real_batch_sz, args.latent_dim]).normal_(0, 1)# random vector
gen_batches = Variable(FloatTensor(get_random_batches(DATA_DIR_TRN, real_batch_sz))).squeeze()
d_logits_real, _, _ = model['d'](batch_input, d_state, labels)
g_feats, _ = model['g'](z, g_states, gen_batches)
# need to detach from operation history to prevent backpropagating to generator
d_logits_gen, _, _ = model['d'](gen_batches, d_state, g_feats.detach())
# ####### calculate loss, backprop, and update weights of D####### #
# valid = Variable(FloatTensor(real_batch_sz, 1).fill_(1.0), requires_grad=False).view(-1)
# fake = Variable(FloatTensor(real_batch_sz, 1).fill_(0.0), requires_grad=False).view(-1)
# d_real_loss = adversarial_loss(d_logits_real, valid)
# d_fake_loss = adversarial_loss(d_logits_gen, fake)
# loss['d'] = d_real_loss + d_fake_loss
loss['d'] = criterion['d'](d_logits_real, d_logits_gen)
log_sum_real += d_logits_real.sum().item()
log_sum_gen += d_logits_gen.sum().item()
if not freeze_d:
loss['d'].backward()
nn.utils.clip_grad_norm_(model['d'].parameters(), max_norm=MAX_GRAD_NORM)
optimizer['d'].step()
# -----------------
# Train Generator
# -----------------
if not freeze_g:
optimizer['g'].zero_grad()
# prepare inputs
z = torch.empty([real_batch_sz, args.latent_dim]).normal_(0, 1)# random vector
gen_batches, gen_gt = get_random_batches(DATA_DIR_TRN, real_batch_sz, gt=1)
gen_batches = Variable(FloatTensor(gen_batches)).squeeze()
gen_gt = Variable(FloatTensor(gen_gt)).squeeze()
# feed inputs to generator
g_feats, _ = model['g'](z, g_states, gen_batches) # 32*8*1
# feed real and generated input to discriminator
d1, d_feats_real, _ = model['d'](batch_input, d_state, labels) # 32*8*1,
d2, d_feats_gen, _ = model['d'](gen_batches, d_state, g_feats)
# calculate loss, backprop, and update weights of G
if args.feature_matching:
loss['g'] = criterion['g'](d_feats_real, d_feats_gen)
else:
valid = Variable(FloatTensor(real_batch_sz, 1).fill_(1.0), requires_grad=False).view(-1)
loss['g'] = adversarial_loss(d2, valid) + nn.MSELoss()(g_feats, gen_gt)
if not freeze_g:
loss['g'].backward()
# nn.utils.clip_grad_norm_(model['g'].parameters(), max_norm=MAX_GRAD_NORM)
optimizer['g'].step()
# print(
# "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
# % (ep, args.num_epochs, i, len(dataloader), loss['d'].item(), loss['g'].item())
# )
# ---------------------
# Plot generated traces
# ---------------------
# print(
# "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
# % (ep, args.num_epochs, i, len(dataloader), loss['d'].item(), loss['g'].item())
# )
g_loss_total += loss['g'].item()
d_loss_total += loss['d'].item()
num_corrects += (d_logits_real > 0.5).sum().item() + (d_logits_gen < 0.5).sum().item()
num_sample += real_batch_sz
g_loss_avg, d_loss_avg = 0.0, 0.0
d_acc = 0.0
if num_sample > 0:
g_loss_avg = g_loss_total / num_sample
d_loss_avg = d_loss_total / num_sample
d_acc = 100 * num_corrects / (2 * num_sample) # 2 because (real + generated)
print("Trn: ", log_sum_real / num_sample, log_sum_gen / num_sample)
gloss_array.append(g_loss_avg)
dloss_array.append(d_loss_avg)
dloss_plot_path = args.stats_path + '/dloss.png'
plt.plot(dloss_array, color='red', linewidth=2.0, label='D')
plt.plot(gloss_array, color='blue', linewidth=2.0, label='G')
plt.ylabel("Loss")
plt.xlabel("epoch")
plt.legend()
plt.savefig(dloss_plot_path)
plt.close()
np.save(args.stats_path + '/d_loss.npy', dloss_array)
np.save(args.stats_path + '/g_loss.npy', gloss_array)
if ep % 20 == 0:
path1 = args.Model_path+'/g_epoch_{}.pt'.format(str(ep))
torch.save({
'epoch': ep,
'model_state_dict': model['g'].state_dict(),
}, path1)
path1 = args.Model_path+'/d_epoch_{}.pt'.format(str(ep))
torch.save({
'epoch': ep,
'model_state_dict': model['d'].state_dict(),
}, path1)
return model, g_loss_avg, d_loss_avg, d_acc
def generate_sample(g_model, batches_done):
''' Sample from generator
'''
n_row = 5
num_sample = n_row*n_row
args = parsers()
z = torch.empty([num_sample, args.latent_dim, args.num_feats]).normal_(0, 1) # random vector
g_states = g_model.init_hidden(num_sample)
LongTensor = torch.cuda.LongTensor
gen_labels = np.array([num for _ in range(n_row) for num in range(n_row)])
gen_labels = Variable(LongTensor(gen_labels))
g_feats, _ = g_model(z, g_states, gen_labels)
gen_imgs = g_feats.cpu()
gen_imgs = gen_imgs.detach().numpy()
fig = plt.figure(figsize=(17, 17))
for i_s in range(1, 26):
ax = plt.subplot(5, 5, i_s)
plt.plot(gen_imgs[i_s-1, :args.seq_len, 0], gen_imgs[i_s-1, :args.seq_len, 1], 2)
value = max(gen_imgs[i_s-1, :args.seq_len, 0].max()-gen_imgs[i_s-1, :args.seq_len, 0].min(), gen_imgs[i_s-1, :args.seq_len, 1].max()-gen_imgs[i_s-1, :args.seq_len, 1].min())
if value < 2.1092:
r = 0
elif value < 2.615:
r = 1
elif value < 2.963:
r = 2
elif value < 3.247:
r = 3
else:
r = 4
ax.set_title('{}-{:.2f}'.format(r, value))
fig.suptitle('epoch:{}'.format(batches_done), fontsize=30)
np.save(args.data_path+'/{}.npy'.format(batches_done), gen_imgs)
plt.savefig(args.pics_path+'/{}_plot.jpg'.format(batches_done))
plt.close()
# save_image(g_feats.data, args.pics_path+ "%d.png" % batches_done, nrow=n_row, normalize=True)
return
def main(args):
''' Training sequence
'''
trn_dataloader = utils.load_data(args.batch_size, DATA_DIR_TRN)
val_dataloader = utils.load_data(args.batch_size, DATA_DIR_TRN)
# First checking if GPU is available
train_on_gpu = torch.cuda.is_available() and args.GPU
if train_on_gpu:
print('Training on GPU.')
else:
print('No GPU available, training on CPU.')
model = {
'g': Generator(num_feats=args.num_feats, use_cuda=train_on_gpu),
'd': Discriminator(num_feats=args.num_feats, use_cuda=train_on_gpu)
}
optimizer = {
# 'g': optim.SGD(model['g'].parameters(), G_LRN_RATE, weight_decay=L2_DECAY),
'g': optim.Adam(model['g'].parameters(), args.g_lr),
'd': optim.Adam(model['d'].parameters(), args.d_lr)
}
criterion = {
'g': nn.MSELoss(reduction='sum'),
'd': DLoss(label_smoothing=args.label_smoothing)
}
if train_on_gpu:
model['g'].cuda()
model['d'].cuda()
# ---------------------
# Pre training
# ---------------------
if not args.no_pretraining:
for ep in range(args.pretraining_epochs):
model, trn_g_loss, trn_d_loss, trn_acc = \
run_training(model, optimizer, criterion, trn_dataloader, ep, freeze_g=True)
# val_g_loss, val_d_loss, val_acc = run_validation(model, criterion, val_dataloader)
print("Pretraining Epoch %d/%d\n"
"\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
"############################################################" %
(ep+1, args.num_epochs, trn_g_loss, trn_d_loss, trn_acc))
for ep in range(args.pretraining_epochs):
model, trn_g_loss, trn_d_loss, trn_acc = \
run_training(model, optimizer, criterion, trn_dataloader, ep, freeze_d=True)
# val_g_loss, val_d_loss, val_acc = run_validation(model, criterion, val_dataloader)
print("Pretraining Epoch %d/%d\n"
"\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
"############################################################" %
(ep+1, args.num_epochs, trn_g_loss, trn_d_loss, trn_acc))
# ---------------------
# Training
# ---------------------
flag = False
for ep in range(args.num_epochs):
model, trn_g_loss, trn_d_loss, trn_acc = run_training(model, optimizer, criterion, trn_dataloader, ep, freeze_d=flag)
if args.freezing:
if trn_acc > 95:
flag = True
print("Freeze D!")
else:
flag = False
# generate_sample(model['g'], ep)
# val_g_loss, val_d_loss, val_acc = run_validation(model, criterion, val_dataloader)
# print("Epoch %d/%d\n"
# "\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
# "\t[Validation] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
# "############################################################" %
# (ep+1, args.num_epochs, trn_g_loss, trn_d_loss, trn_acc,
# val_g_loss, val_d_loss, val_acc))
print("Epoch %d/%d\n"
"\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
"############################################################" %
(ep+1, args.num_epochs, trn_g_loss, trn_d_loss, trn_acc))
with open("./log.txt", 'a') as f:
f.write("Epoch %d/%d\n"
"\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
"############################################################\n" %
(ep+1, args.num_epochs, trn_g_loss, trn_d_loss, trn_acc))
# sampling (to check if generator really learns)
if __name__ == "__main__":
MAX_SEQ_LEN = ARGS.seq_len
BATCH_SIZE = ARGS.batch_size
FREEZE_G = ARGS.freeze_g
FREEZE_D = ARGS.freeze_d
utils.mkr(ARGS.Model_path)
utils.mkr(ARGS.data_path)
utils.mkr(ARGS.pics_path)
utils.mkr(ARGS.stats_path)
path_to_file = './log.txt'
if os.path.exists(path_to_file):
os.remove("./log.txt")
DATA_DIR_TRN = '../data'
# DATA_DIR_VAL = '../../DATA/_DATA_{}_{}/test'.format(ARGS.time_length, ARGS.trace_sample_interval)
print(ARGS)
main(ARGS)