-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathfocal_loss_layer.cpp
259 lines (231 loc) · 8.9 KB
/
focal_loss_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include <algorithm>
#include <cfloat>
#include <vector>
#include "caffe/layers/focal_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
void FocalLossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top)
{
// softmax laye setup
LossLayer<Dtype>::LayerSetUp(bottom, top);
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
// ignore label
has_ignore_label_ = this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
// normalization
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize())
{
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
// focal loss parameter
FocalLossParameter focal_loss_param = this->layer_param_.focal_loss_param();
alpha_ = focal_loss_param.alpha();
beta_ = focal_loss_param.beta();
gamma_ = focal_loss_param.gamma();
type_ = focal_loss_param.type();
LOG(INFO) << "alpha: " << alpha_;
LOG(INFO) << "beta: " << beta_;
LOG(INFO) << "gamma: " << gamma_;
LOG(INFO) << "type: " << type_;
CHECK_GE(gamma_, 0) << "gamma must be larger than or equal to zero";
CHECK_GT(alpha_, 0) << "alpha must be larger than zero";
// CHECK_LE(alpha_, 1) << "alpha must be smaller than or equal to one";
}
template <typename Dtype>
void FocalLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top)
{
// softmax laye reshape
LossLayer<Dtype>::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
// cross-channels
softmax_axis_ = bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
// softmax output
if (top.size() >= 2) {
top[1]->ReshapeLike(*bottom[0]);
}
// log(p_t)
log_prob_.ReshapeLike(*bottom[0]);
CHECK_EQ(prob_.count(), log_prob_.count());
// alpha * (1 - p_t) ^ gamma
power_prob_.ReshapeLike(*bottom[0]);
CHECK_EQ(prob_.count(), power_prob_.count());
// 1
ones_.ReshapeLike(*bottom[0]);
CHECK_EQ(prob_.count(), ones_.count());
caffe_set(prob_.count(), Dtype(1), ones_.mutable_cpu_data());
}
template <typename Dtype>
Dtype FocalLossLayer<Dtype>::get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count)
{
Dtype normalizer;
switch (normalization_mode) {
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = Dtype(valid_count);
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// Some users will have no labels for some examples in order to 'turn off' a
// particular loss in a multi-task setup. The max prevents NaNs in that case.
return std::max(Dtype(1.0), normalizer);
}
template <typename Dtype>
void FocalLossLayer<Dtype>::compute_intermediate_values_of_cpu() {
// compute the corresponding variables
const int count = prob_.count();
const Dtype* prob_data = prob_.cpu_data();
const Dtype* ones_data = ones_.cpu_data();
Dtype* log_prob_data = log_prob_.mutable_cpu_data();
Dtype* power_prob_data = power_prob_.mutable_cpu_data();
/// log(p_t)
const Dtype eps = Dtype(FLT_MIN); // where FLT_MIN = 1.17549e-38, here u can change it
// more stable
for(int i = 0; i < prob_.count(); i++) {
log_prob_data[i] = log(std::max(prob_data[i], eps));
}
/// caffe_log(count, prob_data, log_prob_data);
/// alpha* (1 - p_t) ^ gamma
caffe_sub(count, ones_data, prob_data, power_prob_data);
caffe_powx(count, power_prob_.cpu_data(), gamma_, power_prob_data);
caffe_scal(count, alpha_, power_prob_data);
}
template <typename Dtype>
void FocalLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top)
{
// The forward pass computes the softmax prob values.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
// compute all needed values
compute_intermediate_values_of_cpu();
const Dtype* label = bottom[1]->cpu_data();
const Dtype* log_prob_data = log_prob_.cpu_data();
const Dtype* power_prob_data = power_prob_.cpu_data();
// compute loss
int count = 0;
int channels = prob_.shape(softmax_axis_);
int dim = prob_.count() / outer_num_;
Dtype loss = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, channels);
const int index = i * dim + label_value * inner_num_ + j;
// FL(p_t) = -(1 - p_t) ^ gamma * log(p_t)
// loss -= std::max(power_prob_data[index] * log_prob_data[index],
// Dtype(log(Dtype(FLT_MIN))));
loss -= power_prob_data[index] * log_prob_data[index];
++count;
}
}
// prob
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
void FocalLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom)
{
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
// data
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
// intermidiate
const Dtype* log_prob_data = log_prob_.cpu_data();
const Dtype* power_prob_data = power_prob_.cpu_data();
int count = 0;
int channels = bottom[0]->shape(softmax_axis_);
int dim = prob_.count() / outer_num_;
const Dtype eps = 1e-10;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
// label
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
// ignore label
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < channels; ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
continue;
}
// the gradient from FL w.r.t p_t, here ignore the `sign`
int ind_i = i * dim + label_value * inner_num_ + j; // index of ground-truth label
Dtype grad = 0 - gamma_ * (power_prob_data[ind_i] / std::max(1 - prob_data[ind_i], eps))
* log_prob_data[ind_i] * prob_data[ind_i]
+ power_prob_data[ind_i];
// the gradient w.r.t input data x
for (int c = 0; c < channels; ++c) {
int ind_j = i * dim + c * inner_num_ + j;
if(c == label_value) {
CHECK_EQ(ind_i, ind_j);
// if i == j, (here i,j are refered for derivative of softmax)
bottom_diff[ind_j] = grad * (prob_data[ind_i] - 1);
} else {
// if i != j, (here i,j are refered for derivative of softmax)
bottom_diff[ind_j] = grad * prob_data[ind_j];
}
}
// count
++count;
}
}
// Scale gradient
Dtype loss_weight = top[0]->cpu_diff()[0] / get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
STUB_GPU(FocalLossLayer);
#endif
INSTANTIATE_CLASS(FocalLossLayer);
REGISTER_LAYER_CLASS(FocalLoss);
} // namespace caffe