-
Notifications
You must be signed in to change notification settings - Fork 44
/
volume_fusion.py
223 lines (184 loc) · 10.2 KB
/
volume_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Load a easyvolcap model
Perform rendering on all images of a particular frame
Save the rendered rgb and depth value, along with maybe other attributes
Fuse the final rendered depth values as points into one
This function will try to invoke evc programmatically
"""
import torch
import argparse
from os.path import join
from easyvolcap.utils.console_utils import *
from easyvolcap.utils.base_utils import dotdict
from easyvolcap.utils.image_utils import pad_image
from easyvolcap.utils.cam_utils import compute_camera_similarity
from easyvolcap.utils.chunk_utils import multi_gather, multi_scatter
from easyvolcap.utils.math_utils import point_padding, affine_padding, affine_inverse
from easyvolcap.utils.data_utils import add_batch, to_cuda, export_pts, export_mesh, export_pcd, to_x
from easyvolcap.utils.fusion_utils import filter_global_points, depth_geometry_consistency, compute_consistency
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from easyvolcap.runners.volumetric_video_runner import VolumetricVideoRunner
@catch_throw
def main():
# fmt: off
import sys
sys.path.append('.')
sep_ind = sys.argv.index('--') if '--' in sys.argv else len(sys.argv)
our_args = sys.argv[1:sep_ind]
evc_args = sys.argv[sep_ind + 1:]
sys.argv = [sys.argv[0]] + ['-t', 'test'] + evc_args + ['configs=configs/specs/vis.yaml', 'val_dataloader_cfg.dataset_cfg.disk_dataset=False', 'model_cfg.apply_optcam=True']
args = dotdict(
result_dir=dotdict(type=str, default='data/geometry'),
n_srcs=dotdict(type=int, default=4, help='Number of source views to use for the fusion process'),
occ_mult=dotdict(type=float, default=0.2, help='Multiply the predicted transparency by this value due to overlap'),
msk_abs_thresh=dotdict(type=float, default=0.5, help='If mask exists, filter points with too low a mask value'),
geo_abs_thresh=dotdict(type=float, default=2.0, help='The threshold for MSE in reprojection, unit: squared pixels'), # aiming for a denser reconstruction
geo_rel_thresh=dotdict(type=float, default=0.05, help='The difference in relative depth values, unit: one'),
skip_depth_consistency=False,
)
args = dotdict(vars(build_parser(args, description=__doc__).parse_args(our_args)))
# Entry point first, other modules later to avoid strange import errors
from easyvolcap.scripts.main import test # will do everything a normal user would do
from easyvolcap.engine import cfg
from easyvolcap.engine import SAMPLERS
from easyvolcap.runners.volumetric_video_runner import VolumetricVideoRunner
# fmt: on
runner: VolumetricVideoRunner = test(cfg, dry_run=True)
runner.load_network()
runner.model.eval()
fuse(runner, args) # pcd is a dotdict with all attributes that we want to retain
def fuse(runner: "VolumetricVideoRunner", args: argparse.Namespace):
from easyvolcap.dataloaders.datasamplers import get_inds
dataset = runner.val_dataloader.dataset
inds = get_inds(dataset)
nv, nl = inds.shape[:2]
prefix = 'frame'
if dataset.closest_using_t:
nv, nl = nl, nv
prefix = 'view'
inds = inds.transpose(0, 1)
pbar = tqdm(total=nl * nv, desc=f'Fusing rendered RGBD')
for f in range(nl):
# Values used for reprojection
dpts = []
cens = []
dirs = []
# Values stored to the ply files
occs = []
rads = []
rgbs = []
for v in range(nv):
# Handle data movement
batch = dataset[inds[v, f]] # get the batch data for this view
batch = add_batch(to_cuda(batch))
# Running inference
with torch.inference_mode(), torch.no_grad():
output = runner.model(batch) # get everything we need from the model, this performs the actual rendering
# Get output point clouds
H, W = batch.meta.H[0].item(), batch.meta.W[0].item()
rgb = batch.rgb.view(H, W, -1)
occ = output.acc_map.view(H, W, -1)
rad = torch.full_like(occ, 0.0015)
# Other scalars
if 'gs' in output:
occ = output.gs.occ.view(H, W, -1)
rad = output.gs.pix.view(H, W, -1)[..., :1]
occ = occ * args.occ_mult
dpt = output.dpt_map.view(H, W, -1)
cen = batch.ray_o.view(H, W, -1)
dir = batch.ray_d.view(H, W, -1)
# Zero mask points should be removed
if 'msk' in batch:
msk = batch.msk.view(H, W, -1)
dpt = dpt * (msk > args.msk_abs_thresh)
# Store CUDA depth for later use
dpts.append(dpt) # keep the cuda version for later geometric fusion
cens.append(cen) # keep the cuda version for later geometric fusion
dirs.append(dir) # keep the cuda version for later geometric fusion
occs.append(occ) # keep the cuda version for later geometric fusion
rads.append(rad) # keep the cuda version for later geometric fusion
rgbs.append(rgb) # keep the cuda version for later geometric fusion
pbar.update()
if not args.skip_depth_consistency:
# Get camera parameters
if dataset.closest_using_t:
c2ws = dataset.c2ws[f]
w2cs = dataset.w2cs[f]
Ks = dataset.Ks[f]
else:
c2ws = dataset.c2ws[:, f]
w2cs = dataset.w2cs[:, f]
Ks = dataset.Ks[:, f]
# Compute closer source views
_, src_inds = compute_camera_similarity(c2ws, c2ws) # V, V
# Pad the output properties for easier computation
H, W = max([d.shape[-3] for d in dpts]), max([d.shape[-2] for d in dpts])
dpts = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in dpts]) # V, H, W, 1
cens = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in cens]) # V, H, W, 3
dirs = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in dirs]) # V, H, W, 3
rgbs = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in rgbs]) # V, H, W, 3
occs = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in occs]) # V, H, W, 1
rads = torch.stack([pad_image(i.permute(2, 0, 1), (H, W)).permute(1, 2, 0) for i in rads]) # V, H, W, 1
ptss_out = []
rgbs_out = []
occs_out = []
rads_out = []
# Perform depth consistency check and filtering
for v in range(nv):
# Prepare source views' information
src_ind = src_inds[v, 1:1 + args.n_srcs] # 4,
dpt_src = dpts[src_ind] # 4, HW
ixt_src = Ks[src_ind] # 4, 3, 3
ext_src = affine_padding(w2cs[src_ind]) # 4, 3, 3
# Prepare reference view's information
dpt_ref = dpts[v] # HW, 1
ixt_ref = Ks[v] # 3, 3
ext_ref = affine_padding(w2cs[v]) # 4, 4
# Prepare data for computation
S, H, W, C = dpt_src.shape
dpt_src = dpt_src.view(S, H, W) # 4, H, W
dpt_ref = dpt_ref.view(H, W)
ixt_ref, ext_ref, ixt_src, ext_src = to_cuda([ixt_ref, ext_ref, ixt_src, ext_src])
depth_est_averaged, photo_mask, geo_mask, final_mask = compute_consistency(
dpt_ref, ixt_ref, ext_ref, dpt_src, ixt_src, ext_src,
args.geo_abs_thresh, args.geo_rel_thresh
)
# Filter points based on geometry and photometric mask
ind = final_mask.view(-1).nonzero() # N, 1
dpt = multi_gather(depth_est_averaged.view(-1, 1), ind) # N, 1
dir = multi_gather(dirs[v].view(-1, 3), ind) # N, 3
cen = multi_gather(cens[v].view(-1, 3), ind) # N, 3
rgb = multi_gather(rgbs[v].view(-1, 3), ind) # N, 3
occ = multi_gather(occs[v].view(-1, 1), ind) # N, 1
rad = multi_gather(rads[v].view(-1, 1), ind) # N, 1
pts = cen + dpt * dir # N, 3
log(f'View {v}, photo_mask {photo_mask.sum() / photo_mask.numel():.04f}, geometry mask {geo_mask.sum() / geo_mask.numel():.04f}, final mask {final_mask.sum() / final_mask.numel():.04f}, final point count {len(pts)}')
ptss_out.append(pts)
rgbs_out.append(rgb)
occs_out.append(occ)
rads_out.append(rad)
else:
ptss_out = [(cens[v] + dpts[v] * dirs[v]).view(-1, 3) for v in range(nv)]
rgbs_out = [rgb.view(-1, 3) for rgb in rgbs]
occs_out = [occ.view(-1, 1) for occ in occs]
rads_out = [rad.view(-1, 1) for rad in rads]
# Concatenate per-view depth map and other information
pts = torch.cat(ptss_out, dim=-2).float() # N, 3
rgb = torch.cat(rgbs_out, dim=-2).float() # N, 3
occ = torch.cat(occs_out, dim=-2).float() # N, 1
rad = torch.cat(rads_out, dim=-2).float() # N, 1
# Apply some global filtering
points = filter_global_points(dotdict(pts=pts, rgb=rgb, occ=occ, rad=rad))
log(f'Filtered to {len(points.pts) / len(pts):.06f} of the points globally, final count {len(points.pts)}')
pts, rgb, occ, rad = points.pts, points.rgb, points.occ, points.rad
# Align point cloud with the average camera, which is processed in memory, to make sure the stored files are consistent
if dataset.use_aligned_cameras and not args.skip_align_with_camera: # match the visual hull implementation
pts = (point_padding(pts) @ affine_padding(to_cuda(dataset.c2w_avg)).mT)[..., :3] # homo
# Save final fused point cloud back onto the disk
filename = join(args.result_dir, runner.exp_name, str(runner.visualizer.save_tag), 'POINT', f'{prefix}{f:04d}.ply')
export_pts(pts, rgb, scalars=dotdict(radius=rad, alpha=occ), filename=filename)
log(yellow(f'Fused points saved to {blue(filename)}, totally {cyan(pts.numel() // 3)} points'))
pbar.close()
if __name__ == '__main__':
main()