-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
145 lines (121 loc) · 6.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse, json, time, os
from src import generator, reranker, util, retrieve
from beir import LoggingHandler
import logging, pathlib
import pytorch_lightning as pl
import ast
os.environ['WANDB_MODE'] = 'offline'
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def timestr():
return time.strftime("%Y%m%d-%H%M%S")
def parse():
parser = argparse.ArgumentParser()
# GPU Setting
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--gpus", type=int, default=1)
# Dataset
parser.add_argument("--dataset", type=str, default="msmarco")
parser.add_argument("--search_split", type=str, default="test")
parser.add_argument("--eval_split", type=str, default="dev")
parser.add_argument("--retriever", type=str, default="BM25")
#Reranker
parser.add_argument("--hf_model_name", type=str, default="../models/opt-2.7b")
parser.add_argument("--prompt", type=str, default="Please write a question based on this passage.")
parser.add_argument("--delimiter", type=str, default="\n")
parser.add_argument("--template", type=str, default="Passage: {d}{v}{p}{v}")
##Prompt Search
parser.add_argument("--search", action="store_true")
parser.add_argument("--generator",type=str, default="../models/opt-2.7b")
parser.add_argument("--beam", type=int, default=10)
parser.add_argument("--length", type=int, default=10)
parser.add_argument("--top_k", type=int, default=10)
parser.add_argument("--neg", action="store_true")
parser.add_argument("--start_token", type=str, default="Please")
parser.add_argument("--prompt_no", type=int, default=0)
parser.add_argument("--sample_size", type=int, default=1500)
# dir
parser.add_argument("--out_dir", type=str, default="./out")
parser.add_argument("--dataset_dir", type=str, default="./data")
parser.add_argument("--result_dir", type=str, default="./result/{t}")
parser.add_argument("--save_file_name", type=str, default="{r}_{s}.json")
parser.add_argument("--raw_result_file", type=str, default="raw_result.json")
parser.add_argument("--metric_result_file", type=str, default="metric_result.json")
parser.add_argument("--prompt_dir", type=str, default="./prompts/{d}/")
parser.add_argument("--prompt_file", type=str, default="model_{m}_beam_{b}_length_{l}_top_{t}_neg_{n}_start_{s}.json")
return parser.parse_args()
def load_retrieve(args, corpus, queries):
result_path = os.path.join(args.dataset_dir, args.dataset)
result_file = os.path.join(result_path, args.save_file_name.format(r=args.retriever, s=args.eval_split))
if os.path.exists(result_file):
with open(result_file, 'r') as f:
results = json.load(f)
return results
else:
return retrieve.retrieve(args, corpus, queries)
def rerank(args, corpus, queries, result, prompt, score=False):
writer = util.CustomWriter(os.path.join(pathlib.Path(__file__).parent.absolute(), "result"))
trainer = pl.Trainer(accelerator="gpu", devices=args.gpus, strategy="ddp_spawn",
callbacks=writer)
model = reranker.Reranker(args, prompt)
dataloader = model.get_dataloader(corpus, queries, result)
trainer.predict(model, dataloaders=dataloader)
if not score:
reranked_results = writer.get_data_from_files(trainer, result)
del trainer
return reranked_results
else:
score = float(writer.get_scores_from_files(trainer))
del trainer
return score
def search(args):
args.prompt_dir = args.prompt_dir.format(d=args.dataset)
if not os.path.exists(args.prompt_dir):
os.makedirs(args.prompt_dir, exist_ok=True)
prompt_file = os.path.join(args.prompt_dir, args.prompt_file.format(
m=args.hf_model_name.split("/")[1], b=args.beam, l=args.length, t=args.top_k, n=args.neg, s=args.start_token
))
if not os.path.exists(prompt_file):
corpus, queries, qrels, _ = util.load_data(args.dataset, args.dataset_dir, args.search_split)
pos_qrels = util.get_qrels(args, qrels, args.sample_size)
gen_model = generator.generator(args)
total_prompts = dict()
gen_prompts = {args.start_token : 0}
for _ in range(args.length):
gen_prompts = {p : rerank(args, corpus, queries, pos_qrels, p, True) for prompt in gen_prompts.keys() for p in gen_model.get_tokens(prompt)}
gen_prompts = sorted(gen_prompts.items(), key=lambda item: item[1], reverse=True)
gen_prompts = {gen_prompts[i][0]: gen_prompts[i][1] for i in range(args.top_k)}
total_prompts.update(gen_prompts)
with open(prompt_file, 'w') as fw:
p = {'prompts': total_prompts}
json.dump(p, fw)
with open(prompt_file, 'r') as fr:
prompts = json.load(fr)['prompts']
return prompts[args.prompt_no]
def main():
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
t = timestr()
args = parse()
logging.info("The stored time is {}".format(t))
if args.search:
prompt = search(args)
else:
prompt = args.prompt
test_corpus, test_queries, test_qrels, data_path = util.load_data(args.dataset, args.dataset_dir,
args.eval_split)
test_results = load_retrieve(args, test_corpus, test_queries)
util.evaluate_result(test_results, test_qrels)
reranked_results = rerank(args, test_corpus, test_queries, test_results, prompt)
args.result_dir = args.result_dir.format(t=t)
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir, exist_ok=True)
with open(os.path.join(args.result_dir, "args.json"), 'w') as f:
json.dump(vars(args), f)
ndcg, _map, recall, precision, top_k = util.evaluate_result(reranked_results, test_qrels)
util.record_metric(ndcg, _map, recall, precision,top_k, out_dir=args.result_dir, prompt=prompt,
out_file=args.metric_result_file)
if __name__=="__main__":
main()