Time and memory cost of knowledge-based recommendation models
Dataset
#User
#Item
#Interaction
Sparsity
#Entity
#Relation
#Triple
ml-1m
6,040
3,629
836,478
0.9618
79,388
51
385,923
ml-10m
69,864
10,599
8,242,124
0.9889
181,941
51
1,051,385
LFM-1b
64,536
156,343
6,544,312
0.9994
1,751,586
10
3,054,516
OS: Linux
Python Version: 3.8.3
PyTorch Version: 1.7.0
cudatoolkit Version: 10.1
GPU: TITAN RTX(24GB)
Machine Specs: 32 CPU machine, 64GB RAM
Time and memory cost on ml-1m dataset:
Method
Training Time (sec/epoch)
Evaluation Time (sec/epoch)
GPU Memory (GB)
CKE
3.76
8.73
1.16
KTUP
3.82
17.68
1.04
RippleNet
9.39
13.13
4.57
KGAT
9.59
8.63
3.52
KGNN-LS
4.78
15.09
1.04
KGCN
2.25
13.71
1.04
MKR
6.25
14.89
1.29
CFKG
1.49
9.76
0.97
Config file of ml-1m dataset:
# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: user_id
ITEM_ID_FIELD: item_id
RATING_FIELD: rating
HEAD_ENTITY_ID_FIELD: head_id
TAIL_ENTITY_ID_FIELD: tail_id
RELATION_ID_FIELD: relation_id
ENTITY_ID_FIELD: entity_id
NEG_PREFIX: neg_
LABEL_FIELD: label
load_col:
inter: [user_id, item_id, rating]
kg: [head_id, relation_id, tail_id]
link: [item_id, entity_id]
lowest_val:
rating: 3
unused_col:
inter: [rating]
# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
valid_metric: MRR@10
Other parameters (including model parameters) are default value.
Time and memory cost on ml-10m dataset:
Method
Training Time (sec/epoch)
Evaluation Time (sec/epoch)
GPU Memory (GB)
CKE
8.65
85.53
1.46
KTUP
40.71
507.56
1.43
RippleNet
32.01
152.40
4.71
KGAT
298.22
80.94
22.44
KGNN-LS
15.47
241.57
1.42
KGCN
7.73
244.93
1.42
MKR
61.05
383.29
1.80
CFKG
5.99
140.74
1.35
Config file of ml-10m dataset:
# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: user_id
ITEM_ID_FIELD: item_id
RATING_FIELD: rating
HEAD_ENTITY_ID_FIELD: head_id
TAIL_ENTITY_ID_FIELD: tail_id
RELATION_ID_FIELD: relation_id
ENTITY_ID_FIELD: entity_id
NEG_PREFIX: neg_
LABEL_FIELD: label
load_col:
inter: [user_id, item_id, rating]
kg: [head_id, relation_id, tail_id]
link: [item_id, entity_id]
lowest_val:
rating: 3
unused_col:
inter: [rating]
# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
valid_metric: MRR@10
Other parameters (including model parameters) are default value.
Time and memory cost on LFM-1b dataset:
Method
Training Time (sec/epoch)
Evaluation Time (sec/epoch)
GPU Memory (GB)
CKE
62.99
82.93
4.45
KTUP
91.79
3218.69
4.36
RippleNet
126.26
188.38
6.49
KGAT
626.07
75.70
23.28
KGNN-LS
62.55
1709.10
4.73
KGCN
52.54
1763.03
4.71
MKR
290.01
2341.91
6.96
CFKG
53.35
553.58
4.22
Config file of LFM-1b dataset:
# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: user_id
ITEM_ID_FIELD: tracks_id
RATING_FIELD: rating
HEAD_ENTITY_ID_FIELD: head_id
TAIL_ENTITY_ID_FIELD: tail_id
RELATION_ID_FIELD: relation_id
ENTITY_ID_FIELD: entity_id
NEG_PREFIX: neg_
LABEL_FIELD: label
load_col:
inter: [user_id, tracks_id, timestamp]
kg: [head_id, relation_id, tail_id]
link: [tracks_id, entity_id]
lowest_val:
timestamp: 1356969600
highest_val:
timestamp: 1362067200
unused_col:
inter: [timestamp]
min_user_inter_num: 2
min_item_inter_num: 15
# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
valid_metric: MRR@10
Other parameters (including model parameters) are default value.