-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_3_seq2seq_very_simple_text_seq.py
337 lines (269 loc) · 11.7 KB
/
1_3_seq2seq_very_simple_text_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/
# https://towardsdatascience.com/how-to-implement-seq2seq-lstm-model-in-keras-shortcutnlp-6f355f3e5639
import json
import pickle
import numpy as np
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, LSTM
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import model_from_json, save_model, load_model
MODEL_DIR = "models/1_3"
# ***************************************************
# get source and target (questions and answers)
# ***************************************************
def get_data():
questions, answers = (
# encoder input text data
[
"a",
"b",
"a a",
"a b",
"a c",
"b c",
"a b c",
"b b c",
"b c c",
],
# decoder input text data
[
"a",
"b",
"a a",
"a b",
"a c",
"b c",
"a b c",
"b b c",
"b c c",
]
)
return questions, answers
# ***************************************************
# encoder / decoder
# <BOS>/<EOS> tagging: https://stackoverflow.com/a/55146904
# ***************************************************
def text_encoder(questions, answers, max_len_sequence_out, vocab_size, tokenizer):
'''
answers: <BOS> abc <EOS> -> answers_in: <BOS> abc | answers_out: abc <EOS>
'''
answers_in = [answer for answer in answers] # decoder input
answers_in = [" ".join(x.split()[:-1]) for x in answers_in]
answers_out = [" ".join(x.split()[1:]) for x in answers] # decoder
# sequences
question_sequences = tokenizer.texts_to_sequences(questions)
answers_out_sequences = tokenizer.texts_to_sequences(answers_out)
answers_in_sequences = tokenizer.texts_to_sequences(answers_in)
# padding
padded_question_sequences = pad_sequences(question_sequences)
padded_answers_out_sequences = pad_sequences(answers_out_sequences, maxlen=max_len_sequence_out, padding="post")
padded_answers_in_sequences = pad_sequences(answers_in_sequences, maxlen=max_len_sequence_out, padding="post")
# encoding
questions_encoded = to_categorical(padded_question_sequences, num_classes=vocab_size)
answers_in_encoded = to_categorical(padded_answers_in_sequences, num_classes=vocab_size)
answers_out_encoded = to_categorical(padded_answers_out_sequences, num_classes=vocab_size)
return questions_encoded, answers_in_encoded, answers_out_encoded # X1, X2, y
def text_decoder(encoded_sequences, tokenizer):
"""
i.e.
--> a sequence (in sequences)
[
[0. 1. 0.]
[0. 1. 0.]
[0. 0. 1.]
]
--> [[1, 1, 2]] after one hot encoding
--> ['b b a'] after sequences_to_texts
"""
one_hot_decoder = list()
for encoded_sequence in encoded_sequences: # each 'sentence'
one_hot_decoder.append([np.argmax(vector) for vector in encoded_sequence]) # append list of max indices to list
decoded_sentences = tokenizer.sequences_to_texts(one_hot_decoder)
return decoded_sentences
# ***************************************************
# buld model and inference encoder / decoder from model
# https://stackoverflow.com/a/56448284
# ***************************************************
def build_model(vocab_size, latent_dim):
# ****************
# model
# ****************
# define training encoder
encoder_inputs = Input(shape=(None, vocab_size))
encoder = LSTM(latent_dim, return_state=True, return_sequences=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
# ***
# define training decoder
decoder_inputs = Input(shape=(None, vocab_size))
decoder = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(vocab_size, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# model.summary()
return model
def build_inference_encoder_decoder(model, latent_dim):
# ***
# encoder
# ***
encoder_inputs = model.input[0] # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = Model(encoder_inputs, encoder_states)
# ***
# decoder
# ***
decoder_inputs = model.input[1] # input_2
decoder_state_input_h = Input(shape=(latent_dim,), name='input_3')
decoder_state_input_c = Input(shape=(latent_dim,), name='input_4')
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder = model.layers[3]
decoder_outputs, state_h, state_c = decoder(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_dense = model.layers[4] # dense
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
return encoder_model, decoder_model
# ***************************************************
# save / load model
# https://machinelearningmastery.com/save-load-keras-deep-learning-models/
# ***************************************************
def save_lstm_model(tokenizer, model, model_name, max_len_sequence_out):
model_config = model.to_json(indent=2) # serialize model to JSON (str)
# add additinal info: length of longest answer text
model_config = json.loads(model_config)
model_config["max_len_sequence_out"] = max_len_sequence_out
model_config = json.dumps(model_config, indent=2)
with open(f"{MODEL_DIR}/{model_name}_config.json", "w") as f:
f.write(model_config)
model.save_weights(f"{MODEL_DIR}/{model_name}_weights.h5") # serialize weights to HDF5
with open(f"{MODEL_DIR}/{model_name}_tokenizer.pickle", "wb") as f:
pickle.dump(tokenizer, f, protocol=pickle.HIGHEST_PROTOCOL)
def load_lstm_model(model_name):
with open(f"{MODEL_DIR}/{model_name}_config.json") as f:
model_config = f.read()
model = model_from_json(model_config)
model.load_weights(f"{MODEL_DIR}/{model_name}_weights.h5")
with open(f"{MODEL_DIR}/{model_name}_tokenizer.pickle", "rb") as f:
tokenizer = pickle.load(f)
n_units = None
config_data = json.loads(model_config)
max_len_sequence_out = config_data["max_len_sequence_out"]
for layer in config_data["config"]["layers"]:
if layer["name"] == "lstm_1":
n_units = layer["config"]["units"]
return tokenizer, model, n_units, max_len_sequence_out
# ***************************************************
# predict/generate 'answer' to given 'question' sequence
# see also https://keras.io/examples/lstm_seq2seq_restore/ -> decode_sequence(input_seq)
# ***************************************************
def predict_sequence(
inference_encoder,
inference_decoder,
question_sequence,
max_len_sequence_out,
vocab_size,
tokenizer
):
# ***
# encode
state = inference_encoder.predict(question_sequence)
print(state)
# ***
# initialize empty sequence
answer_sequence = np.array([0.0 for _ in range(vocab_size)]).reshape(1, 1, vocab_size)
print(answer_sequence.shape)
# ***
# collect predictions
output = list()
for _ in range(max_len_sequence_out):
# predict next char
output_tokens, h, c = inference_decoder.predict([answer_sequence] + state)
# get token text of best prediction
# check break condition: stopword from trained answers <END> --> end
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sample_token = tokenizer.sequences_to_texts([[sampled_token_index]])[0]
if sample_token == "eos":
break
# store prediction
output.append(output_tokens[0,0,:])
# update state
state = [h, c]
# update target sequence
answer_sequence = output_tokens
return np.array(output)
# ***********************************************************************************
#
# ***********************************************************************************
def train(model_name="test", epochs=10):
# **********
# generate training dataset
# **********
questions, answers = get_data()
questions = [f"{question}" for question in questions] # encoder input
answers = [f"<BOS> {answer} <EOS>" for answer in answers] # enrich decoder with tags (see: text_encoding)
# **********
# process text
# **********
tokenizer = Tokenizer(oov_token="<UNKNOWN>")
tokenizer.fit_on_texts(questions + answers) # fit tokenize on all text
vocab_size = len(tokenizer.word_index)+1
max_len_sequence_out = max([len(x.split()) for x in answers]) # placed here for later saving
# **********
# encode questions and answers
# X1: encoder input (questions) | X2: decoder input (answers_in) | y: decoder output (answers_out)
# **********
X1, X2, y = text_encoder(questions, answers, max_len_sequence_out, vocab_size, tokenizer)
vocab_size = len(tokenizer.word_index)+1
# **********
# build model
# **********
latent_dim = 128
model = build_model(vocab_size, latent_dim)
inference_encoder, inference_decoder = build_inference_encoder_decoder(model, latent_dim)
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
# **********
# train model
# **********
model.fit([X1, X2], y, epochs=epochs)
# **********
# save
# add additional info to config json about max length answer sequence
# **********
save_lstm_model(tokenizer, model, model_name, max_len_sequence_out)
# ***************************************************
# predict some examples and count correct predictions (evaluate LSTM)
# https://keras.io/examples/lstm_seq2seq_restore/
# ***************************************************
def predict(model_name):
# ***********
# load data
# ***********
tokenizer, model, n_units, max_len_sequence_out = load_lstm_model(model_name)
vocab_size = len(tokenizer.word_index)+1
inference_encoder, inference_decoder = build_inference_encoder_decoder(model, n_units)
# ***********
# predict sequence
# ***********
# # these q&a are defined in training data (all correctly predicted after short training)
questions_test = ["a b", "b c", "a c", "b b c"]
answers_test = ["a b", "b c", "a c", "b b c"]
# these q&a are NOT defined in training data
# questions_test = ["b a", "c", "c b c", "b b"]
# answers_test = ["b a", "c", "c b c", "b b"]
for i, question in enumerate(questions_test):
question = [question]
answer = [answers_test[i]]
# encode text
X_test, _, _ = text_encoder(question, answer, max_len_sequence_out, vocab_size, tokenizer)
# predict answer and decode to text
predicted_sequence = predict_sequence(inference_encoder, inference_decoder, X_test, max_len_sequence_out, vocab_size, tokenizer)
prediction = text_decoder([predicted_sequence], tokenizer)[0]
print(f"X: {question[0]} | y: {answer[0]} | yhat: {prediction} ---> {answer[0] == prediction}")
print("---")
train(model_name="test", epochs=200)
predict(model_name="test")