-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_2_text_generation_simple_char.py
264 lines (205 loc) · 8.82 KB
/
2_2_text_generation_simple_char.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# https://github.com/keras-team/keras/blob/master/examples/lstm_text_generation.py
# https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
# generally: https://minimaxir.com/2018/05/text-neural-networks/
import json
import numpy as np
import pickle
from random import shuffle
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Model, Sequential, model_from_json, save_model, load_model
from tensorflow.keras.layers import Dense, Dropout, Embedding, LSTM
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.initializers import Constant
from tensorflow.keras.optimizers import RMSprop
MODEL_DIR = "models/2_2"
DATA_DIR = "../../data/recipe_texts/dessert_instructions_short.txt"
EMBEDDING_DIM = 100
EMBEDDING_FILEPATH = f"../../data/glove/german_vectors_{EMBEDDING_DIM}_char.txt"
# ***************************************************
#
# ***************************************************
def get_data():
with open(DATA_DIR) as f:
text = f.read().lower()
text = text.splitlines()
# text = text[:int(len(text)/5)] # make very short text for tests
text = [x for x in text if len(x) > 0]
shuffle(text)
text = "\n".join(text)
try:
text = text[:10000] # restrict to 10000 words
except:
pass
return text
# ***************************************************
# create char embedding matrix
# https://minimaxir.com/2017/04/char-embeddings/
#
# generally:
# https://keras.io/examples/pretrained_word_embeddings/
# Creating embedding matrix can take a while, hence implemented load/save in test()
# ***************************************************
def create_word_embedding_glove(tokenizer, vocab_size):
embeddings_index = {}
with open(EMBEDDING_FILEPATH) as f:
for line in f:
try:
line = line.strip().split(" ")
word = line[:1][0]
coefs = np.array([float(val) for val in line[1:]])
embeddings_index[word] = coefs
except Exception as e:
print(e)
continue
# prepare embedding matrix
embedding_matrix = np.zeros((vocab_size, EMBEDDING_DIM))
for char, i in tokenizer.word_index.items():
embedding_vector = embeddings_index.get(char)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
with open(f"{MODEL_DIR}/embedding_matrix.pickle", "wb") as f:
pickle.dump(embedding_matrix, f, protocol=pickle.HIGHEST_PROTOCOL)
def load_word_embedding_glove():
with open(f"{MODEL_DIR}/embedding_matrix.pickle", "rb") as f:
embedding_matrix = pickle.load(f)
return embedding_matrix
# ***************************************************
#
# ***************************************************
def text_encoder(text, max_len_sequence, vocab_size, tokenizer, one_hot_enc_x=False):
sequences = [] # seqence in -> X
next_chars = [] # sequence out -> y
'''
scan over text with step 1
'''
for i in range(0, len(text) - max_len_sequence, 1):
sequences.append(text[i:i + max_len_sequence])
next_chars.append(text[i + max_len_sequence])
print('num sequences:', len(sequences))
# sequences
sequences_indexed = tokenizer.texts_to_sequences(sequences)
next_chars_indexed = tokenizer.texts_to_sequences(next_chars)
# padding
padded_sequences = pad_sequences(sequences_indexed, maxlen=max_len_sequence)
padded_next_chars = pad_sequences(next_chars_indexed)
# one-hot encoded
one_hot_sequences = to_categorical(padded_sequences, num_classes=vocab_size)
one_hot_next_chars = to_categorical(padded_next_chars, num_classes=vocab_size)
if one_hot_enc_x is False:
return padded_sequences, one_hot_next_chars
else:
return one_hot_sequences, one_hot_next_chars
# *************************************************
# build very simple model
# *************************************************
def build_model(vocab_size, max_len_sequence, embedding_matrix, hidden_layer, dropout):
encoder_embedding_layer = Embedding(
input_dim = vocab_size,
output_dim = embedding_matrix.shape[1], # dimension of embedding matrix i.e. 100
name = "encoder_embedding",
input_length = max_len_sequence,
embeddings_initializer=Constant(embedding_matrix),
trainable = True,
mask_zero="True"
)
model = Sequential()
model.add(encoder_embedding_layer)
model.add(LSTM(hidden_layer, input_shape=(max_len_sequence, vocab_size)))
model.add(Dropout(dropout))
model.add(Dense(vocab_size, activation='softmax'))
return model
# ***************************************************
# save / load model
# https://machinelearningmastery.com/save-load-keras-deep-learning-models/
# ***************************************************
def save_lstm_model(tokenizer, model, model_name):
'''
Don't use save_weights() and load_weights() along with Adam.
These functions save only the model weights, but not the optimizer.
should be changed to model.save() / load_model()
see: https://stackoverflow.com/questions/45424683/how-to-continue-training-for-a-saved-and-then-loaded-keras-model
'''
model.save(f"{MODEL_DIR}/{model_name}.h5")
with open(f"{MODEL_DIR}/{model_name}_tokenizer.pickle", "wb") as f:
pickle.dump(tokenizer, f, protocol=pickle.HIGHEST_PROTOCOL)
def load_lstm_model(model_name):
'''
Don't use save_weights() and load_weights() along with Adam.
These functions save only the model weights, but not the optimizer.
should be changed to model.save() / load_model()
see: https://stackoverflow.com/questions/45424683/how-to-continue-training-for-a-saved-and-then-loaded-keras-model
'''
model = load_model(f"{MODEL_DIR}/{model_name}.h5")
with open(f"{MODEL_DIR}/{model_name}_tokenizer.pickle", "rb") as f:
tokenizer = pickle.load(f)
return tokenizer, model
# ***************************************************
#
# ***************************************************
def train(model_name="test", epochs=10):
text = get_data()
# *****
# fit tokenize on all text
tokenizer = Tokenizer(char_level=True) # see also: https://minimaxir.com/2017/04/char-embeddings/
tokenizer.fit_on_texts(text)
vocab_size = len(tokenizer.word_index)+1
max_len_sequence = 40
# *****
# create new embedding matrix if change input data
create_word_embedding_glove(tokenizer, vocab_size)
embedding_matrix = load_word_embedding_glove()
# *****
#
X, y = text_encoder(text, max_len_sequence, vocab_size, tokenizer, False)
# *****
#
hidden_layer = 128
dropout = 0.2
model = build_model(vocab_size, max_len_sequence, embedding_matrix, hidden_layer, dropout)
model.compile(loss='categorical_crossentropy', optimizer="adam")
model.fit(X, y, batch_size=128, epochs=epochs)
save_lstm_model(tokenizer, model, model_name)
def continue_train(old_model_name="test", new_model_name="test", epochs=10):
text = get_data()
# *****
# load
tokenizer, model = load_lstm_model(old_model_name)
max_len_sequence = model.input.shape[1]
vocab_size = len(tokenizer.word_index)+1
# *****
#
X, y = text_encoder(text, max_len_sequence, vocab_size, tokenizer, False)
# *****
#
model.fit(X, y, batch_size=128, epochs=epochs)
save_lstm_model(tokenizer, model, new_model_name)
# *************************************************
# generate seed and predict / generate text
# *************************************************
def generate(model_name="test"):
tokenizer, model = load_lstm_model(model_name)
# model.summary()
max_len_sequence = model.input.shape[1]
vocab_size = len(tokenizer.word_index)+1
seeds = ["vorsichtig in eine schüssel geben"]
for i in range(len(seeds)):
seed_str = seeds[i]
generated_str = seed_str
x = tokenizer.texts_to_sequences([seed_str])
x = pad_sequences(x, maxlen=max_len_sequence)
for j in range(1000):
prediction = model.predict(x, verbose=0)
index = np.argmax(prediction)
next_char = tokenizer.sequences_to_texts([[index]])[0]
if next_char == "\n":
break
generated_str += next_char
tmp = [n for n in list(x[0]) if n != 0][1:]
tmp += [index]
x = pad_sequences([tmp], maxlen=max_len_sequence)
print(generated_str)
print("--------")
# train("dessert_recipes/dessert_100", 100)
continue_train("dessert_recipes/dessert_100", "dessert_recipes/dessert_200", 100)
# generate("dessert_recipes/dessert_200")