-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathengine_prompt_tuning.py
193 lines (170 loc) · 7.13 KB
/
engine_prompt_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json, os, sys
import torch
from datetime import datetime
from textwrap import wrap
from transformers.optimization import Adafactor
from transformers import (
T5Tokenizer,
GPT2Tokenizer,
Trainer,
TrainingArguments,
)
from model_prompt_tuning import T5PromptTuningLM, GPT2PromptTuningLM
from utils_prompt_tuning import evaluate
from prepare_data import get_dataset
from collator import T2TDataCollator
os.environ["WANDB_DISABLED"] = "true"
class Unbuffered(object):
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def writelines(self, datas):
self.stream.writelines(datas)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
sys.stdout = Unbuffered(sys.stdout)
def setup_logs(args):
if args['logging']:
print('File logging is enabled')
timestamp = datetime.now().strftime("%Y-%m-%d-%H%M%S")
path = "{}/{}/{}/{}/{}".format(args["method"], args["train_set"], args["model"], args["n_tokens"], timestamp)
isExist = os.path.exists(path)
if not isExist:
os.makedirs(path)
sys.stderr = open(os.path.join(path, "err.txt"), "w")
sys.stdout = open(os.path.join(path, "log.txt"), "w")
args['path'] = path
return path
def get_data_model(args):
if "t5" in args["model"]:
tokenizer = T5Tokenizer.from_pretrained(args["model"])
model = T5PromptTuningLM.from_pretrained(
args["model"],
n_tokens=args["n_tokens"],
soft_prompt_path=args["soft_prompt_path"],
initialize_from_vocab=args["initialize_from_vocab"],
random_range=args["random_range"],
)
if "gpt" in args["model"]:
tokenizer = GPT2Tokenizer.from_pretrained(args["model"])
model = GPT2PromptTuningLM.from_pretrained(
args["model"],
n_tokens=args["n_tokens"],
soft_prompt_path=args["soft_prompt_path"],
initialize_from_vocab=args["initialize_from_vocab"],
random_range=args["random_range"],
)
if args['task'] == 'qa':
train_set, val_set, test_set = get_dataset(tokenizer, args)
return {
'model': model,
'tokenizer': tokenizer,
'train_set': train_set,
'val_set': val_set,
'test_set': test_set,
}
def get_optim(model, args):
if args['optimizer'] == 'adafactor':
optimizer = Adafactor(model.parameters(),
scale_parameter=args['scale_parameter'],
relative_step=args['relative_step'],
warmup_init=args['warmup_init'],
lr=args['lr'],
clip_threshold=args['clip_threshold'])
# TODO: we might need s scheduler
lr_scheduler = None
else:
pass
return {
'optim': optimizer,
'scheduler': lr_scheduler,
}
def get_training_args(args):
if args['logging']:
args['artifact_dir'] = args['path'] + '/artifact'
else:
args['artifact_dir'] = './tmp'
training_args = TrainingArguments(
remove_unused_columns=False,
per_device_train_batch_size=args['bz'], # batch size per device during training
per_device_eval_batch_size=args['bz'], # batch size for evaluation
num_train_epochs=args['epoch'],
disable_tqdm=args['logging'],
report_to=None,
output_dir=args['artifact_dir'], # output directory
save_strategy='epoch',
save_total_limit=1,
logging_dir=args['path'], # directory for storing logs
logging_steps=20,
)
return training_args
def generate_predictions(model, tokenizer, dataset, debug):
predictions = {}
length = 10 if debug else len(dataset)
for i in range(length):
if debug:
print(f'evaluating example {i} of {length}')
qid, question, context = dataset['qid'][i], dataset['question'][i], dataset['context'][i]
input_ids = tokenizer.encode('question: %s context: %s' % (question, context),
return_tensors='pt').to(model.device)
decoder_input_ids = torch.tensor([[tokenizer.encode(tokenizer.pad_token)[0]]]).to(input_ids.device)
for i in range(10):
idx = model(input_ids, decoder_input_ids=decoder_input_ids, return_dict=True).logits.argmax(-1)[0][-1]
decoder_input_ids=torch.cat((decoder_input_ids,torch.tensor([[idx]]).to(decoder_input_ids.device)), dim=1)
pred = ' '.join([tokenizer.decode(decoder_input_ids[0], skip_special_tokens=False)])
pred = pred.replace('</s>','').replace('<pad>','').lower().strip()
predictions[qid] = pred
return predictions
def compute_metrics(wrapper, debug=False):
model, tokenizer, val_set, test_set = wrapper['model'], wrapper['tokenizer'], wrapper['val_set'], wrapper['test_set']
val_set_gts = dict(zip(val_set['qid'], val_set['answers']))
val_set_pred = generate_predictions(model, tokenizer, val_set, debug)
val_set_metric = evaluate(val_set_gts, val_set_pred, True)
print(f' val_set: {val_set_metric}')
test_set_gts = dict(zip(test_set['qid'], test_set['answers']))
test_set_pred = generate_predictions(model, tokenizer, test_set, debug)
test_set_metric = evaluate(test_set_gts, test_set_pred, True)
print(f' test_set: {test_set_metric}')
return val_set_metric, test_set_metric
def save_logs(model, args):
if args['logging']:
model.save_soft_prompt(args['path'], filename='soft_prompt.model')
metainfo_file = os.path.join(args['path'], 'info.json')
with open(metainfo_file, 'w') as fp:
json.dump(args, fp)
def run(args):
args['path'] = None
path = setup_logs(args)
model_data_wrapper = get_data_model(args)
optim_wrapper = get_optim(model_data_wrapper['model'], args)
training_args = get_training_args(args)
trainer = Trainer(
model=model_data_wrapper['model'],
args=training_args,
train_dataset=model_data_wrapper['train_set'],
eval_dataset=model_data_wrapper['val_set'],
data_collator=T2TDataCollator(),
optimizers=(optim_wrapper['optim'], optim_wrapper['scheduler']),
)
trainer.train()
save_logs(model_data_wrapper['model'], args)
# TODO: add evaluation on validation set and the test set
compute_metrics(model_data_wrapper)
def test_model(args):
# TODO: remove hardcoding directory
model = T5PromptTuningLM.from_pretrained(args["model"],
return_dict=False,
soft_prompt_path='prompt_tuning/SQuAD/t5-small/1/2022-02-04-221142/soft_prompt.model')
tokenizer = T5Tokenizer.from_pretrained(args["model"])
train_set, val_set, test_set = get_dataset(tokenizer, args)
wrapper = {
'model': model,
'tokenizer': tokenizer,
'train_set': train_set,
'val_set': val_set,
'test_set': test_set,
}
compute_metrics(wrapper, True)