forked from jpzxshi/sympnets
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdouble_pendulum.py
executable file
·137 lines (123 loc) · 4.35 KB
/
double_pendulum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 16 20:46:25 2020
@author: zen
"""
import numpy as np
import matplotlib.pyplot as plt
import learner as ln
from learner.integrator.hamiltonian import SV
class DBData(ln.Data):
'''Data for learning the double pendulum system with the Hamiltonian H(p1,p2,q1,q2)
= (m2l2^2p1^2 + (m1+m2)l_1^2p2^2 - 2m2l1l2p1p2cos(q1-q2))/(2m2l1^2l2^2(m1+m2sin^2(q1-q2)))
-(m1+m2)gl1cosq1 - m2gl2cosq2.
'''
def __init__(self, x0, h, train_num, test_num, add_h=False):
super(DBData, self).__init__()
self.solver = SV(None, self.dH, iterations=10, order=6, N=5)
self.x0 = x0
self.h = h
self.train_num = train_num
self.test_num = test_num
self.add_h = add_h
self.__init_data()
@property
def dim(self):
return 4
def __generate_flow(self, x0, h, num):
X = self.solver.flow(np.array(x0), h, num)
x, y = X[:-1], X[1:]
if self.add_h:
x = np.hstack([x, self.h * np.ones([x.shape[0], 1])])
return x, y
def __init_data(self):
self.X_train, self.y_train = self.__generate_flow(self.x0, self.h, self.train_num)
self.X_test, self.y_test = self.__generate_flow(self.y_train[-1], self.h, self.test_num)
def dH(self, p, q):
p1 = p[..., 0]
p2 = p[..., 1]
q1 = q[..., 0]
q2 = q[..., 1]
h1 = p1*p2*np.sin(q1-q2)/(1+np.sin(q1-q2)**2)
h2 = (p1**2+2*p2**2-2*p1*p2*np.cos(q1-q2))/2/(1+np.sin(q1-q2)**2)**2
dHdp1 = (p1-p2*np.cos(q1-q2))/(1+np.sin(q1-q2)**2)
dHdp2 = (-p1*np.cos(q1-q2)+2*p2)/(1+np.sin(q1-q2)**2)
dHdq1 = 2*np.sin(q1)+h1-h2*np.sin(2*(q1-q2))
dHdq2 = np.sin(q2)-h1+h2*np.sin(2*(q1-q2))
dHdp = np.hstack([dHdp1, dHdp2])
dHdq = np.hstack([dHdq1, dHdq2])
return dHdp, dHdq
def plot(data, net):
t_test = np.arange(0, data.h*data.test_num, data.h)
if isinstance(net, ln.nn.HNN):
flow_true = data.solver.flow(data.X_test_np[0][:-1], data.h, data.test_num-1)
flow_pred = net.predict(data.X_test[0][:-1], data.h, data.test_num-1, keepinitx=True, returnnp=True)
else:
flow_true = data.solver.flow(data.X_test_np[0], data.h, data.test_num-1)
flow_pred = net.predict(data.X_test[0], data.test_num-1, keepinitx=True, returnnp=True)
plt.figure(figsize=[6 * 2, 4.8 * 1])
plt.subplot(121)
plt.plot(t_test, flow_true[:, 2], color='b', label='Ground truth', zorder=0)
plt.scatter(t_test, flow_pred[:, 2], color='r', label='Predicted solution', zorder=1)
plt.ylim([-1.5,2])
plt.title('Pendulum 1')
plt.legend(loc='upper left')
plt.subplot(122)
plt.plot(t_test, flow_true[:, 3], color='b', label='Ground truth', zorder=0)
plt.scatter(t_test, flow_pred[:, 3], color='r', label='Predicted solution', zorder=1)
plt.ylim([-1.5,2])
plt.title('Pendulum 2')
plt.legend(loc='upper left')
plt.savefig('double_pendulum.pdf')
def main():
device = 'cpu' # 'cpu' or 'gpu'
# data
x0 = [0, 0, np.pi*3/7, np.pi*3/8]
h = 0.75
train_num = 200
test_num = 100
# net
net_type = 'LA' # 'LA' or 'G' or 'HNN'
LAlayers = 8
LAsublayers = 5
Glayers = 8
Gwidth = 50
activation = 'sigmoid'
Hlayers = 4
Hwidth = 50
Hactivation = 'tanh'
# training
lr = 0.001
iterations = 50000
print_every = 1000
add_h = True if net_type == 'HNN' else False
criterion = None if net_type == 'HNN' else 'MSE'
data = DBData(x0, h, train_num, test_num, add_h)
if net_type == 'LA':
net = ln.nn.LASympNet(data.dim, LAlayers, LAsublayers, activation)
elif net_type == 'G':
net = ln.nn.GSympNet(data.dim, Glayers, Gwidth, activation)
elif net_type == 'HNN':
net = ln.nn.HNN(data.dim, Hlayers, Hwidth, Hactivation)
args = {
'data': data,
'net': net,
'criterion': criterion,
'optimizer': 'adam',
'lr': lr,
'iterations': iterations,
'batch_size': None,
'print_every': print_every,
'save': True,
'callback': None,
'dtype': 'float',
'device': device
}
ln.Brain.Init(**args)
ln.Brain.Run()
ln.Brain.Restore()
ln.Brain.Output()
plot(data, ln.Brain.Best_model())
if __name__ == '__main__':
main()