Skip to content
/ NeoRL Public

Neocortex-like reinforcement learning that runs on the GPU or CPU (OpenCL)

License

Notifications You must be signed in to change notification settings

222464/NeoRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

NeoRL Logo

Welcome to NeoRL, an algorithmic GPU neocortex simulation library.

Installation

NeoRL requires OpenCL 2.0 or greater to run. Unfortunately this excludes Nvidia hardware, but it will work for AMD and Intel processors. If you have an AMD card, I recommend getting the AMD APP SDK here: http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/ Otherwise, you can try the Intel OpenCL SDK: https://software.intel.com/en-us/intel-opencl It should also be feasible to run it on a Xeon Phi.

In order to run the demos, you will also need to install SFML. Additionally, one demo (Runner) requires Box2D in order to work.

To select a demo, change the macros in Settings.h.

You can generate documentation using Doxygen and the provided doxygen_config file.

Overview

See the accompanying blog posts at to discover how NeoRL works internally at http://www.twistedkeyboardsoftware.com/ You don't need to know this in order to use it, it can be treated as a black box sequence predictor as well.

NeoRL contains both reinforcement learning agents as well as a predictive hierarchy. These are fully online learning algorithms. The simplest usage of both the reinforcement learning agents and the predictive hierarchy involves calling:

	std::mt19937 generator(time(nullptr));

	sys::ComputeSystem cs;

	cs.create(sys::ComputeSystem::_gpu);

	sys::ComputeProgram prog;

	prog.loadFromFile("resources/neoKernels.cl", cs);

	// --------------------------- Create the Predictive Hierarchy ---------------------------

	// Temporary input buffer
	cl::Image2D inputImage = cl::Image2D(cs.getContext(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_R, CL_FLOAT), 2, 2);

	// Layer descriptors for hierarchy
	std::vector<neo::PredictiveHierarchy::LayerDesc> layerDescs(3);

	layerDescs[0]._size = { 16, 16 };
	layerDescs[1]._size = { 16, 16 };
	layerDescs[2]._size = { 16, 16 };

	// Hierarchy itself
	neo::PredictiveHierarchy ph;

	// 2x2 input field
	ph.createRandom(cs, prog, { 2, 2 }, layerDescs, { -0.01f, 0.01f }, 0.0f, generator);

You can then step the simulation with:

	// Copy vals into temporary OpenCL image buffer
	cs.getQueue().enqueueWriteImage(inputImage, CL_TRUE, { 0, 0, 0 }, { 2, 2, 1 }, 0, 0, vals.data());

	// Step the simulation
	ph.simStep(cs, inputImage);

	// Retrieve the prediction (same dimensions as input field)
	std::vector<float> pred(4);

	cs.getQueue().enqueueReadImage(ph.getFirstLayerPred().getHiddenStates()[neo::_back], CL_TRUE, { 0, 0, 0 }, { 2, 2, 1 }, 0, 0, pred.data());

See the demos for more complicated usage.

License

ZLib license. See LICENSE.md

About

Neocortex-like reinforcement learning that runs on the GPU or CPU (OpenCL)

Resources

License

Stars

Watchers

Forks

Packages

No packages published