The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically,
- We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN.
- We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss.
We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required.
You can download from :
- DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
- Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
- OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip
Here are steps for data preparation.
For the DF2K dataset, we use a multi-scale strategy, i.e., we downsample HR images to obtain several Ground-Truth images with different scales.
You can use the scripts/generate_multiscale_DF2K.py script to generate multi-scale images.
Note that this step can be omitted if you just want to have a fast try.
python scripts/generate_multiscale_DF2K.py --input datasets/DF2K/DF2K_HR --output datasets/DF2K/DF2K_multiscale
We then crop DF2K images into sub-images for faster IO and processing.
This step is optional if your IO is enough or your disk space is limited.
You can use the scripts/extract_subimages.py script. Here is the example:
python scripts/extract_subimages.py --input datasets/DF2K/DF2K_multiscale --output datasets/DF2K/DF2K_multiscale_sub --crop_size 400 --step 200
You need to prepare a txt file containing the image paths. The following are some examples in meta_info_DF2Kmultiscale+OST_sub.txt
(As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file):
DF2K_HR_sub/000001_s001.png
DF2K_HR_sub/000001_s002.png
DF2K_HR_sub/000001_s003.png
...
You can use the scripts/generate_meta_info.py script to generate the txt file.
You can merge several folders into one meta_info txt. Here is the example:
python scripts/generate_meta_info.py --input datasets/DF2K/DF2K_HR datasets/DF2K/DF2K_multiscale --root datasets/DF2K datasets/DF2K --meta_info datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt
-
Download pre-trained model ESRGAN into
experiments/pretrained_models
.wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models
-
Modify the content in the option file
options/train_realesrnet_x4plus.yml
accordingly:train: name: DF2K+OST type: RealESRGANDataset dataroot_gt: datasets/DF2K # modify to the root path of your folder meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt io_backend: type: disk
-
If you want to perform validation during training, uncomment those lines and modify accordingly:
# Uncomment these for validation # val: # name: validation # type: PairedImageDataset # dataroot_gt: path_to_gt # dataroot_lq: path_to_lq # io_backend: # type: disk ... # Uncomment these for validation # validation settings # val: # val_freq: !!float 5e3 # save_img: True # metrics: # psnr: # metric name, can be arbitrary # type: calculate_psnr # crop_border: 4 # test_y_channel: false
-
Before the formal training, you may run in the
--debug
mode to see whether everything is OK. We use four GPUs for training:CUDA_VISIBLE_DEVICES=0,1,2,3 \ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
Train with a single GPU in the debug mode:
python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --debug
-
The formal training. We use four GPUs for training. We use the
--auto_resume
argument to automatically resume the training if necessary.CUDA_VISIBLE_DEVICES=0,1,2,3 \ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
Train with a single GPU:
python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --auto_resume
-
After the training of Real-ESRNet, you now have the file
experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth
. If you need to specify the pre-trained path to other files, modify thepretrain_network_g
value in the option filetrain_realesrgan_x4plus.yml
. -
Modify the option file
train_realesrgan_x4plus.yml
accordingly. Most modifications are similar to those listed above. -
Before the formal training, you may run in the
--debug
mode to see whether everything is OK. We use four GPUs for training:CUDA_VISIBLE_DEVICES=0,1,2,3 \ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
Train with a single GPU in the debug mode:
python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --debug
-
The formal training. We use four GPUs for training. We use the
--auto_resume
argument to automatically resume the training if necessary.CUDA_VISIBLE_DEVICES=0,1,2,3 \ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
Train with a single GPU:
python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --auto_resume
You can finetune Real-ESRGAN on your own dataset. Typically, the fine-tuning process can be divided into two cases:
Only high-resolution images are required. The low-quality images are generated with the degradation process described in Real-ESRGAN during training.
1. Prepare dataset
See this section for more details.
2. Download pre-trained models
Download pre-trained models into experiments/pretrained_models
.
-
RealESRGAN_x4plus.pth:
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
-
RealESRGAN_x4plus_netD.pth:
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
3. Finetune
Modify options/finetune_realesrgan_x4plus.yml accordingly, especially the datasets
part:
train:
name: DF2K+OST
type: RealESRGANDataset
dataroot_gt: datasets/DF2K # modify to the root path of your folder
meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt
io_backend:
type: disk
We use four GPUs for training. We use the --auto_resume
argument to automatically resume the training if necessary.
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --launcher pytorch --auto_resume
Finetune with a single GPU:
python realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --auto_resume
You can also finetune RealESRGAN with your own paired data. It is more similar to fine-tuning ESRGAN.
1. Prepare dataset
Assume that you already have two folders:
- gt folder (Ground-truth, high-resolution images): datasets/DF2K/DIV2K_train_HR_sub
- lq folder (Low quality, low-resolution images): datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub
Then, you can prepare the meta_info txt file using the script scripts/generate_meta_info_pairdata.py:
python scripts/generate_meta_info_pairdata.py --input datasets/DF2K/DIV2K_train_HR_sub datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub --meta_info datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
2. Download pre-trained models
Download pre-trained models into experiments/pretrained_models
.
-
RealESRGAN_x4plus.pth
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
-
RealESRGAN_x4plus_netD.pth
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models
3. Finetune
Modify options/finetune_realesrgan_x4plus_pairdata.yml accordingly, especially the datasets
part:
train:
name: DIV2K
type: RealESRGANPairedDataset
dataroot_gt: datasets/DF2K # modify to the root path of your folder
dataroot_lq: datasets/DF2K # modify to the root path of your folder
meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt # modify to your own generate meta info txt
io_backend:
type: disk
We use four GPUs for training. We use the --auto_resume
argument to automatically resume the training if necessary.
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --launcher pytorch --auto_resume
Finetune with a single GPU:
python realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --auto_resume